Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Хотя нам совсем не обязательно вдаваться в подробности уравнений Максвелла, давайте все же окинем их быстрым взглядом:

Здесь Е, В и j— векторные поля, описывающие, соответственно, электрическое поле, магнитное поле и электрический ток;  ρ— плотность электрического заряда, а с— постоянная — скорость света [115]. Не стоит огорчаться, если вам не известен смысл обозначений « rot» и « div». Они просто означают различные пространственные вариации полей В и Е. (Обозначения « rot» и « div» представляют собой определенные комбинации частных производных по пространственным координатам. Напомним, что операции взятия «частной производной», обозначаемой символом , мы коснулись в связи с уравнениями Гамильтона.) Операторы / ∂t, стоящие в левых частях двух первых уравнений, по существу означают то же самое, что «точки» в уравнениях Гамильтона (различие в обозначениях вызвано чисто техническими причинами). Таким образом, ∂E/ ∂t означает «скорость изменения во времени электрического поля», a ∂B/ ∂t означает «скорость изменения во времени магнитного поля».

Первое уравнение [116]связывает изменения электрического поля с текущими значениями магнитного поля и электрического тока; тогда как второе, наоборот, описывает изменения магнитного поля в зависимости от величины электрического поля. Третье уравнение, грубо говоря, представляет собой закодированную форму закона обратных квадратов, показывающую, как электрическое поле (в данный момент времени) должно быть связано с распределением зарядов. Что же касается четвертого уравнения, то оно говорит то же самое о магнитном поле (с той лишь разницей, что «магнитные заряды» — отдельные «северные» и «южные» полюсы частиц — не существуют).

Уравнения Максвелла несколько напоминают уравнения Гамильтона тем, что определяют скорость изменения по времени соответствующих величин (электрического и магнитного полей) в зависимости от их текущих значений в любой заданный момент времени. Следовательно, уравнения Максвелла являются по сути детерминистскими— точно так же, как и система уравнений в обычной гамильтоновой теории. Единственное (хотя и важное) различие состоит в том, что уравнения Максвелла полевые, а не корпускулярные. Это означает, что для описания состояния такой системы необходимо бесконечно много параметров (векторы поля в каждой точке пространства) вместо всего лишь конечного числа параметров (трех координат положения и трех компонент импульса каждой частицы) в корпускулярной теории. Таким образом, фазовое пространство в теории Максвелла бесконечномерно! (Как я уже упоминал выше, уравнения Максвелла в действительности могут быть включены в общую гамильтонову схему, но из-за их бесконечномерности гамильтонову схему перед этим необходимо слегка обобщить [117].)

Принципиально новой составляющей в той картине нашего физического мира, которая выстраивалась на основе теории Максвелла (помимо и сверх того, что было известно ранее), стала необходимость рассматривать поля уже не как математические придатки к «реальным» частицам, или корпускулам, в ньютоновской теории — но как самостоятельно существующие объекты. Действительно, Максвелл показал, что когда поля распространяются в виде электромагнитных волн, они переносят с собой определенное количество энергии. Ему удалось получить даже явное выражение для этой энергии. То есть оказалось, что энергию, на самом деле, могли переносить с места на место «нематериальные» электромагнитные волны. Этот факт был экспериментально подтвержден Герцем, сумевшим зарегистрировать электромагнитные волны. То, что радиоволны действительно могут переносить энергию, до сих пор представляется удивительным даже тем, кто в той или иной степени знаком с этим феноменом!

Вычислимость и волновое уравнение

Непосредственно из своих уравнений Максвелл сумел вывести, что в областях пространства, где нет ни зарядов, ни токов (т. е. там, где в приведенных выше уравнениях j= 0, ρ= 0) все компоненты электрического и магнитного полей должны удовлетворять так называемому волновому уравнению. [118] Волновое уравнение можно рассматривать как «упрощенный вариант» уравнений Максвелла, так как оно записано для одной-единственной величины, а не для всех шести компонент электрического и магнитного полей. Решения уравнения Даламбера дают пример волнообразного движения без дополнительных усложняющих свойств наподобие «поляризации» в теории Максвелла (направления вектора электрического поля, см. гл. 6 «Спин фотона»).

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки