Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Разумеется, такой эксперимент никогда не был поставлен для расстояний порядка светового года, но сформулированный выше результат не вызывает серьезных сомнений (у физиков, придерживающихся традиционной квантовой механики!) Эксперименты такого типа в действительности выполнялись для расстояний порядка многих метров или около того, и результаты оказывались в полном согласии с квантово-механическими предсказаниями (см. Уилер [1983]). Что же теперь можно сказать о реальности существования фотона между первой и последней встречей с полуотражающим зеркалом? Напрашивается неизбежным вывод, согласно которому фотон должен в некотором смысле действительно пройти оба маршрута сразу! Ибо если бы на пути любого из двух маршрута был помещен поглощающий экран, то вероятности попадания фотона в детектор А или В оказались бы одинаковыми! Но если открыты оба маршрута (оба одинаковой длины), то фотон может достичь только А. Блокировка одного из маршрутов позволяет фотону достичь детектора В! Если оба маршрута открыты, то фотон каким-то образом «знает», что попадание в детектор В не разрешается, и поэтому он вынужден следовать сразу по двум маршрутам.

Точка зрения Нильса Бора, согласно которой существованию фотона между моментами, когда производятся измерения, нельзя придать объективный «смысл», представляется мне слишком пессимистической относительно реальности состояния фотона. Квантовая механика дает нам волновую функцию для описания «реальности» положения фотона, и между полупосеребренными зеркалами волновая функция фотона как раз описывает состояние с двумя пиками, причем расстояние между пиками иногда бывает весьма значительным.

Заметим также, что утверждение «находится сразу в двух определенных местах» не полностью характеризует состояние фотона: нам необходимо отличать состояние ψt+ ψb, например, от состояния ψtψ b(или, например, от состояния ψt+ b), где ψt и ψb теперь относятся к положениям фотона на каждом из двух маршрутов (соответственно «прошедшем» и «отраженном»!). Именно такого рода различие определяет, достигнет ли фотон с достоверностью детектора А, пройдя до второго полупосеребренного зеркала, либо он с достоверностью достигнет детектора В(или же он попадет в детекторы А и В с некоторой промежуточной вероятностью).

Эта загадочная особенность квантовой реальности, состоящая в том, что мы всерьез должны принимать во внимание, что частица может различными способами «находиться в двух местах сразу», проистекает из того, что нам приходится суммировать квантовые состояния, используя комплекснозначные веса для получения других квантовых состояний. Такого рода суперпозиция состояний является общей (и важной) особенностью квантовой механики, известной под названием квантовой линейной суперпозиции. Именно эта особенность квантовой механики позволяет нам образовывать импульсные состояния из конфигурационных состояний и конфигурационные состояния — из импульсных. В этих случаях линейная суперпозиция применяется к бесконечному массиву различных состояний, т. е. ко всем различным конфигурационным состояниям или ко всем различным импульсным состояниям. Но, как мы видели выше, квантовая линейная суперпозиция весьма озадачивает, даже если мы применяем ее всего лишь к двум состояниям. По правилам квантовой механики любые два состояния, сколь бы сильно они ни отличались друг от друга, могут сосуществовать в любой комплексной линейной суперпозиции. Более того, любой объект, состоящий из отдельных частиц, должен обладать способностью существовать в такой суперпозиции пространственно далеко разнесенных состояний и тем самым «находиться в двух местах сразу»! В этом отношении формализм квантовой механики не проводит различия между отдельными частицами и сложными системами, состоящими из многих частиц. Почему же тогда мы не наблюдаем в повседневной жизни макроскопические тела, например, крикетные шары или даже людей, находящиеся в двух совершенно различных местах? Это — глубокий вопрос, и современная квантовая теория по сути дела не дает нам удовлетворительного ответа на него. В случае объекта, сравнимого с крикетным шаром, нам необходимо рассматривать систему на «классическом уровне». Или, как принято обычно говорить, производить «наблюдение» или «измерение» над крикетным шаром. Но в этом случае в качестве вероятностей, описывающих реальные альтернативы, необходимо рассматривать квадраты модулей комплекснозначных амплитуд вероятности, входящие в наши линейные суперпозиции в виде весов. Однако при этом сразу возникает сомнение в правомерности замены подобным способом квантовой U- процедуры на R- процедуру. К этому вопросу мы еще вернемся в дальнейшем.

Гильбертово пространство

Перейти на страницу:

Все книги серии Синергетика: от прошлого к будущему

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки