Обычно считается, что пространство и время непрерывны. Некоторые философы также утверждают, что непрерывными являются все процессы в природе. Отсюда и знаменитый афоризм Лейбница: Natura non facit saltus («Природа не делает скачков»). В привычном смысле «непрерывный» означает «непрестанный, происходящий без перерывов». В математике, где точность имеет первостепенное значение, путь к точному определению непрерывности был долог и тернист. Даже определение функции долгое время было связано с понятием непрерывности[19]
.В терминах современной математики выразить утверждение, похожее на изречение Лейбница, довольно сложно. В последние годы XVIII в. считалось, что для непрерывных функций бесконечно малое изменение аргумента ведет к бесконечно малому изменению значения функции. В XIX в. ученые отказались от понятия «бесконечно малое»[20]
, и это определение было заменено другим, где использовалось более точное понятие предела.Если мы скажем, например, что функция не делает скачков, на языке математики это будет недостаточно точно. В попытках дать более точное определение можно прийти к следующему: график непрерывной функции должен быть связным (то есть его нельзя разделить на два открытых множества, пересечение которых будет пустым множеством), однако, возможно, следует сказать, что он должен быть линейно связным[21]
(любые две его точки можно соединить дугой некой кривой).В действительности понятия функции, непрерывности и дифференцируемости имеют точные определения, которые изучаются в старших классах средней школы. В настоящее время функция называется непрерывной в точке, если односторонние пределы функции в этой точке совпадают с ее значением в этой точке[22]
. Однако при изучении функций часто бывает недостаточно анализа одной лишь непрерывности и возникает необходимость в определении каких-то дополнительных свойств. Одним из таких свойств является равномерная непрерывность. Равномерная непрерывность означает, что небольшие изменения аргумента приводят к небольшим изменениям значения функции и, кроме того, величина этих изменений зависит от величины изменений аргумента, а не от самого значенияРассмотрим в качестве примера функцию
Хотя чешский математик Бернард Больцано (1781–1848) предвосхитил появление точного определения непрерывности, длительное время его работы игнорировались. Идея, которая легла в основу современного определения непрерывности (по сути, идентичная идеям Больцано), принадлежит французскому математику
Огюстену Луи Коши (1789–1857), который описал непрерывность функции, использовав понятие предела. Так, согласно Коши, функция
lim
Производная функции в точке равна тангенсу угла наклона касательной к графику функции в этой точке. Это утверждение, важнейшее в дифференциальном исчислении, было сформулировано совместно Ньютоном и Лейбницем. Определение дифференцируемости интуитивно понятно: если в некоторой точке кривая не имеет единственной касательной, то функция, описывающая эту кривую, не дифференцируема в этой точке. В начале XIX в. большинство математиков полагали, что непрерывная функция имеет производную (иными словами, касательная к графику этой функции однозначно определена) почти во всех точках.
Однако в 1872 г. Карл Вейерштрасс выступил в Берлинской академии наук с докладом, который потряс все математическое сообщество: он показал, что существует непрерывная функция, не дифференцируемая ни в одной точке. Эта функция определяется как сумма синусоидальных функций и имеет два параметра,
Когда а принимает значения от 0 до 1, функция является непрерывной. Однако Вейерштрасс доказал, что эта функция не имеет производной ни в одной точке, если
В своей работе Вейерштрасс упоминает Римана, который, по-видимому, исследовал похожую функцию ранее, в 1861 г., но не опубликовал свои результаты. Функция Римана также представляет собой сумму синусоидальных функций, но не содержит параметров, а индекс
Построить график функции такого вида непросто. На следующей иллюстрации представлен график функции Римана и колебания курса акций некоего банка в течение года. Этот пример показывает, что подобная кривая может описывать реальные события.