Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

Добавим к повороту и симметрии два новых преобразования: одно из них позволяет изменять ширину и высоту фигуры в разных пропорциях, другое — поворачивать оси координат на разные углы. Получим множество преобразований, которые называются аффинными преобразованиями плоскости. Первое из этих двух преобразований позволяет трансформировать квадрат в треугольник, а с помощью второго, которое называется сжатием, можно превратить квадрат в ромб. Фрактальные структуры, которые можно получить с помощью подобных преобразований, называются самоаффинными. К ним относится очень известный «папоротник Барнсли», открытый британским ученым Майклом Барнсли. Можно заметить, что для его построения требуется четыре аффинных преобразования, одно из которых заключается в сжатии по ширине до нуля (так формируется стебель), второе, примененное трижды, — комбинация сжатия и поворота (представлено на рисунке), с помощью которого получаются ветви.



Папоротник Барнсли и его различные аффинные преобразования.


Используя эти преобразования, можно построить множество различных фракталов, которые называются линейными фракталами или системами итерируемых функций (от английского IFS — Iterated Function Systems). Эти системы получаются путем применения ряда преобразований к некоему множеству. Согласно формулировке, введенной Барнсли в книге «Фракталы повсюду», система итерируемых функций — это система функций, задающих определенное преобразование, которое затем выполняется на протяжении множества итераций. Результатом применения этих преобразований является так называемый аттрактор. Другими словами, аттрактор системы итерируемых функций — это форма, к которой стремится фрактал, когда указанные преобразования повторяются достаточно большое число раз. Может показаться удивительным, но аттрактор не зависит от изначально выбранной исходной фигуры, на которой строится фрактал. Все фракталы, о которых мы рассказали в этой книге, можно построить, используя это множество преобразований.

Попробуем использовать систему итерируемых функций, чтобы описать кривую дракона, о которой рассказано в предыдущей главе. Несмотря на внешнюю сложность этой кривой, для ее построения нужно всего два преобразования. Чтобы показать, что форма итоговой кривой не зависит от исходного множества, построим кривую дракона сначала на основе отрезка, а затем на основе некоторой фигуры.

В случае с отрезком будем для простоты считать его длину равной единице. Сначала уменьшим отрезок в 1/√2 раз и повернем его на 45° против часовой стрелки. Поместим левый конец отрезка в точку с координатами (0, 0). Затем снова уменьшим исходный отрезок в 1/√2 раз и повернем его на 135° снова против часовой стрелки, поместив правый конец полученного отрезка в точку с координатами (1,1).

Нетрудно заметить, что полученные отрезки соприкасаются концами в верхней точке. Это возможно благодаря тому, что мы подобрали коэффициент уменьшения так, что отрезки образуют половину квадрата, разрезанного по диагонали. Применив эти же преобразования к кривой, полученной на первой итерации, получим следующую итерацию кривой дракона и так далее. Заметьте, насколько быстро кривая, полученная на промежуточных итерациях, приближается по форме к итоговой кривой дракона.



Кривая дракона, построенная на основе отрезка.

(Источник: Мария Изабель Бинимелис.)


Во втором случае выберем в качестве исходной фигуры изображение щенка далматинца, которых в итоге станет 101, а может быть, и больше. Построение кривой дракона в этом случае будет аналогично построению на основе отрезка.



Кривая дракона, построенная на основе изображения далматинца.

(Источник: Мария Изабель Бинимелис.)


Коллаж для воссоздания любого изображения


Мы увидели, как с помощью систем итерируемых функций можно получить некоторые классические фракталы, и показали, как при последовательном выполнении аффинных преобразований формируется некий аттрактор. Тем не менее по-настоящему интересно то, что для любого изображения можно описать систему итерируемых функций, аттрактором которой будет данное изображение. Другими словами, мы решим обратную задачу фрактальной геометрии.

В этом смысле одним из важнейших открытий является теорема коллажа, которую сформулировал Барнсли в 1985 г. Допустим, дано некоторое множество L и соответствующая система итерируемых функций. Чтобы узнать, в какой степени эта система функций аппроксимирует L, построим отображение L для каждой функции и объединим их в одно общее изображение. Отличие между исходным и полученным изображением подскажет, как можно приближенно описать множество L с помощью данной системы функций.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное