никакого значения сами по себе не имеют, точно так же, как и числовые знаки; однако из неё можно получить формулы, которым мы приписываем значение, именно тем, что мы их понимаем как сообщение конечных высказываний. Если мы этот взгляд обобщим, то математика сведётся к совокупности формул, во-первых, таких, которым соответствуют содержательные сообщения конечных высказываний, т. е. по существу числовых равенств или неравенств, и во-вторых, других формул, которые сами по себе никакого значения не имеют и которые являются
Какова же была наша цель? В математике мы нашли, с одной стороны, такие конечные высказывания, которые содержат только числовые знаки, как-то:
3 > 2, 2 + 3 = 3 + 2, 2 = 3, 1 ≠ 1;
эти высказывания, если исходить из нашей конечной точки зрения, оказываются непосредственно наглядными и без дальнейшего понятными; их можно отрицать, они верны или ложны, можно свободно, не задумываясь, распоряжаться ими согласно логике Аристотеля; закон противоречия для них имеет место, т. е. какое-либо высказывание этого рода и его отрицание не могут оба быть верны; имеет место закон исключённого третьего, т. е. одно из двух — либо данное высказывание верно, либо верно его отрицание. Когда я говорю: «некоторое высказывание ложно», то это равносильно утверждению: «отрицание этого высказывания верно». Кроме этих элементарных высказываний совершенно непроблематического характера, мы встречали также конечные высказывания проблематического характера, например, такие, которые были неразделимы. Наконец, мы ввели идеальные высказывания, которые должны способствовать тому, чтобы в совокупности опять-таки имели место обычные законы логики. Но так как идеальные высказывания, именно формулы, сами по себе не имеют значения, поскольку они не выражают конечных утверждений, то логические операции над ними не могут производиться содержательно, как над конечными высказываниями. В таком случае сами логические операции и математические доказательства необходимо формализовать; это требует перевода логических соотношений на язык формул. Поэтому мы должны будем к математическим знакам прибавить ещё и логические знаки, например:
& (и), V (или; либо), --> (если, то), ! (неверно)
и пользоваться кроме математических переменных
Как это может произойти? К счастью для нас, здесь оказывается та же предустановленная гармония, которую мы так часто встречаем в истории развития науки — которая пригодилась Эйнштейну, когда он для своей гравитационной теории нашёл вполне разработанное общее исчисление инвариантов: в качестве такой успешно разрабатывавшейся предварительной теории мы находим
Мы хотим ещё кратко разъяснить, каким образом формализируется