Читаем О чём не пишут в книгах по Delphi полностью

  raise ESyntaxError.Create(

   'Некорректный символ в позиции ' + IntToStr(Р));

end;

Если вы разобрались с предыдущими примерами, приведенный здесь код будет вам понятен. Некоторых комментариев требует только функция Term. Она выделяет, начиная с заданного символа, ту часть строки, которая соответствует определению . Вызвавшая ее функция Expr должна продолжить разбор выражения со следующего за этой подстрокой символа, поэтому функция Term, как и Number, имеет параметр-переменную P, которая на входе содержит номер первого символа слагаемого, а на выходе — номер первого после этого слагаемого символа.

Пример калькулятора, учитывающего приоритет операций, находится на компакт-диске под именем PrecedenceCalcSample. Поэкспериментировав с ним, легко убедиться, что теперь вычисление "2+2*2" дает правильное значение 6.

В заключение заметим, что язык, определяемый такой грамматикой, полностью совпадает с языком, определяемым грамматикой из предыдущего примера, т.е. любое выражение, принадлежащее первому языку, принадлежит и второму, и наоборот. Усложнение синтаксиса, которое мы здесь ввели, требуется именно для отражения семантики выражений, а не для расширения самого языка.

<p>4.6. Выражения со скобками</p>

Порядок выполнения операций в выражении может меняться с помощью скобок. Внутри них должно находиться выражение, которое, будучи выделенным в отдельную строку, само по себе отвечает требованиям синтаксиса к выражению в целом.

Выражение, заключенное в скобки, допустимо везде, где допускается появление отдельного числа (из этого, в частности, следует, что допускаются вложенные скобки). Таким образом, мы должны расширить нашу грамматику так, чтобы аргументом операций сложения и умножения могли служить не только числа, но и выражения, заключенные в скобки. Это автоматически позволит использовать такие выражения и в качестве слагаемых, потому что слагаемое — это последовательность из одного или нескольких множителей, разделенных знаками умножения и деления. На языке БНФ все сказанное иллюстрирует листинг 4.6.

Листинг 4.6. Грамматика выражения со скобками (первое приближение)

::= { }

::= { }

::= | ' (' ')'

В этих определениях появилась рекурсия, т.к. в определении используется (через ) символ , а в определении . Соответственно, подобная грамматика будет реализовываться рекурсивными функциями.

Наша грамматика не учитывает, что перед скобками может стоять знак унарной операции "+" или "-", хотя общепринятые правила записи выражений вполне допускают выражения типа 3*-(2+4). Поэтому, прежде чем приступить к созданию нового калькулятора, введем правила, допускающие такой синтаксис. Можно было бы модифицировать определение таким образом:

::= | [Sign] '(' ')'

Однако такой подход страдает отсутствием общности. В дальнейшем мы усложним наш синтаксис, введя другие типы множителей (функции, переменные). Перед каждым из них, в принципе, может стоять знак унарной операции, поэтому логичнее определить синтаксис таким образом, чтобы унарная операция допускалась вообще перед любым множителем. В этом случае можно будет слегка упростить определение , т.к. знак "+" или "-" в начале числа можно будет трактовать не как часть числа, а как унарный оператор, стоящий перед множителем, представленным в виде числовой константы.

С учетом этого новая грамматика запишется следующим образом (листинг 4.7).

Листинг 4.7. Окончательный вариант грамматики выражения со скобками

::= { }

::= { }

::= | | '(' ')'

::= {} [ {}]

 [ [] {}]

::= '+' | '-'

Здесь опущены определения некоторых вспомогательных символов, которые не изменились.

Мы видим, что грамматика стала "более рекурсивной", т.е. в определении символа используется он сам. Соответственно, функция Factor будет вызывать саму себя.

Символ , определение которого совпадает с определениями и , мы делаем независимым нетерминальным символом по тем же причинам, что и ранее: в принципе, синтаксис может допускать унарные операции (как, например, not в Delphi), которые не являются ни знаками, ни допустимыми бинарными операциями.

Побочным эффектом нашей грамматики стало то, что, например, -5 воспринимается как множитель, а потому перед ним допустимо поставить унарный оператор, т. е. выражение --5 также является корректным множителем и трактуется как -(-5). А перед --5, в свою очередь, можно поставить еще один унарный оператор. И так — до бесконечности. Это может показаться не совсем правильным, но, тем не менее, такая грамматика широко распространена. Легко, например, убедиться, что компилятор Delphi считает допустимым выражение 2+-+-2, трактуя его как 2+(-(+(-2))). Листинг 4.8 иллюстрирует реализацию данной грамматики.

Листинг 4.8. Реализация калькулятора со скобками
Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже