Мы уже говорили, что оптические спектры зависят от тех условий, в которых находятся атомы. Сильные магнитные поля изменяют оптические спектры атомов; они расщепляют спектральные линии. Таково же действие сильных электрических полей. Особенно резко меняет характер спектров ионизация атомов, т. е. выбивание из их электронной оболочки электронов. Спектр у незаряженного атома не такой, как у его иона. Когда про это забывали — приходили к ложным заключениям. Был, например, такой случай. В спектрах звездной туманности астрономы обнаружили линии, которые никто не наблюдал на Земле. Астрономы думали, что они открыли новый элемент, и заранее дали ему имя — небулий (от латинского слова «небула» — туманность). Казалось, они имели на это право: совсем так же был открыт гелий. Но небулию не повезло. Спустя много лет физики обнаружили, что неизвестные линии принадлежат не новому элементу, а дважды ионизованному кислороду, находящемуся в звездных туманностях в особых условиях. Таким же образом в звездных спектрах были «открыты» элементы короний и геокороний. Спектры, которые ввели в заблуждение астрономов, также принадлежали ионам давно известных элементов.
Недаром Менделеев так осторожно относился к известиям об открытии гелия, пока его не обнаружили на Земле. Еще в 80-х годах он указывал, что оптические спектры элементов сильно меняются в зависимости от тех условий, в которых находятся излучающие атомы. Академик Д. С. Рождественский впервые дал правильное истолкование спектров ряда ионизованных атомов (магния, ртути и других).
Физики изучают не только самые спектры, но и законы их изменений. По этим изменениям они узнают те условия, в которых находятся излучающие атомы. По тому, как изменяются звездные спектры, как сдвигаются в них линии давно известных элементов, ученые узнают, как и куда движутся звезды, как перемещаются отдельные области их атмосфер, каково давление в них, имеются ли в звездах электрические и магнитные поля, как ионизованы в них атомы и многое другое. По относительной яркости отдельных линий, иначе говоря, по тому, как в спектре излучения распределяется энергия, узнают температуру звезд. Таким же образом определяют температуру в электрической дуге, в доменных печах, всюду, где обычный термометр нельзя применять.
Так изучение спектров говорит нам не только о том, с каким веществом мы имеем дело, но и о его физическом состоянии.
Серии рентгеновских излучений
На рентгеновские спектры атомов внешние условия не оказывают столь большого влияния. Даже когда атомы вступают в химические соединения, их внутренние слои не перестраиваются. Поэтому рентгеновские спектры молекул те же, что и спектры составляющих атомов до их соединения в молекулу. Все это показывает, что электронные слои, в которых они возникают, лежат глубоко внутри атома и нелегко поддаются внешнему воздействию.
Рентгеновские излучения, возникающие в атомах одного и того же вещества, довольно резко разделяются на несколько серий по длине волны. Наиболее жесткие излучения, с короткими волнами, физики называют серией
Анализ спектров рентгеновских излучений показывает, что слой
Изучение рентгеновских излучений показало, что структура внутренних электронных слоев одинакова у тяжелых атомов.
Рентгеновские частоты и ядерные заряды
Физики изучили частоты рентгеновских излучений у всех атомов, последовательно переходя от легких к более тяжелым. При этом переходе никаких периодических изменений в частотах не наблюдается. Зато наблюдается другая закономерность — частоты рентгеновских излучений постепенно, с ростом заряда ядра, возрастают. Опыты показывают, что частота излучений серии