Частота фиолетового излучения равна 750 тысячам миллиардов, или 7,5·1014
циклам. Она, как видим, больше, чем у красного излучения, почти в два раза.Итак, физики получили две характеристики одного и того же цветного луча: длину волны и частоту.
В этой книжке мы будем применять иногда одну характеристику, а иногда другую. Переход же от одной характеристики к другой очень прост.
От призмы к спектрографу
Опыты с призмой показали, что как бы мало ни отличался один луч света от другого по частоте световой волны, он по-своему
преломляется в призме и потому занимает в спектре свое, определенное место.Этот факт и использовал немецкий физик Густав Кирхгоф (1824—1887) в конце 50-х годов прошлого века, когда потребовалось выяснить, отличается ли по цвету пламя, окрашенное парами стронция, от пламени, окрашенного парами лития.
Установка Ньютона была усовершенствована. У Ньютона она была громоздкой, начиналась со щели в ставне, а кончалась цветной полосой на противоположной стене. Теперь вся установка была смонтирована в виде небольшого переносного прибора, состоящего из призмы и трех оптических трубок (рис. 15). Этот прибор и получил название спектроскопа
.Посмотрим, как он работает. Пусть в окрашенном пламени имеется два цвета, например, красный и фиолетовый. Лучи от этого пламени попадают в щель
Надо помнить, что на рисунке все показано в разрезе: щель в заслонке
На изображения щелей, т. е. на линии
Шкала заранее проградуирована, т. е. заранее промерено, какой частоты излучение падает на изображение любого ее деления. Такой прибор называют спектрографом. Работа с прибором упростилась: достаточно взглянуть в трубку спектрографа — и отсчет по шкале показывает, каковы частоты излучений (или длины волн), испускаемых источником света.
Вскоре физики еще более усовершенствовали спектрограф: в зрительной трубке был поставлен фотоаппарат. Спектры уже не наблюдают непосредственно глазом, их фотографируют, а фотографии тщательно изучают.
Так в XIX веке родился замечательный прибор — спектрограф.
Свет рассказывает о составе веществ
Химики заводят спектральную книгу
Теперь ученые получили в свои руки мощное орудие исследования света — спектрограф. Они стали рассматривать через этот прибор пламя горелки, окрашенное парами различных металлов—натрия, калия, лития и других.
Спектры окрашенного пламени представляли собой любопытную картину. В разных частях шкалы на черном фоне загорались цветные линии. У натрия загорелась всего только одна линия — желтая; позднее в более мощный спектроскоп физики рассмотрели, что на самом деле это две, очень близко расположенные линии 5890Å и 5896Å. У калия были три линии: две красные рядом друг с другом и фиолетовая вдалеке от них.
Такие спектры из отдельных линий были названы линейчатыми
(см. приложение II; две желтые линии натрия и две красные линии калия на рисунке сливаются в одну).