Если физическую непрерывность
Если, напротив, можно подразделить
Таким образом, понятие физической непрерывности многих измерений оказывается определенным благодаря тому весьма простому факту, что две группы ощущений могут быть различимыми или же неразличимыми.
Математическая непрерывность нескольких измерений. Понятие математической непрерывности
Не всегда необходимо, чтобы величины эти были измеримыми. В геометрии имеется целая отрасль, в которой отвлекаются от измерения этих величин; в ней занимаются, например, только изучением вопроса, лежит ли точка
В этом вся сущность учения, привлекшего к себе внимание величайших геометров, учения, из которого вытекает ряд замечательных теорем. Эти теоремы отличаются от теорем обыкновенной геометрии тем, что они являются чисто качественными, и они остались бы справедливыми, если бы фигуры копировались неискусным чертежником, который грубо нарушал бы их пропорции и заменял бы прямые линии более или менее искривленными.
Когда в только что определенную нами непрерывность пожелали ввести меру, эта непрерывность превратилась в пространство: родилась геометрия. Но я откладываю это исследование для второй части.
Часть II
Пространство
Глава III
Неевклидовы геометрические системы
Всякое заключение предполагает наличие посылок; посылки же эти или сами по себе очевидны и не нуждаются в доказательстве, или могут быть установлены, только опираясь на другие предположения. Но так как этот процесс не может продолжаться беспредельно, то всякая дедуктивная наука, и в частности геометрия, должна основываться на некотором числе недоказуемых аксиом. Поэтому все руководства по геометрии прежде всего излагают эти аксиомы. Но между этими аксиомами приходится делать различие; некоторые их них, как, например, аксиома: «две величины, равные одной и той же третьей, равны между собой», суть предложения не геометрии, а анализа. Я рассматриваю их как аналитические априорные суждения и не буду заниматься ими. Но я должен остановиться на других аксиомах, которые относятся к геометрии. Большинство руководств излагают три такие аксиомы:
1. Между двумя точками можно провести лишь одну прямую.
2. Прямая есть кратчайшее расстояние между двумя точками.
3. Через данную точку можно провести лишь одну прямую, параллельную данной.
Хотя вообще и обходятся без доказательства второй из этих аксиом, но было бы возможно вывести ее из двух остальных и из тех гораздо более многочисленных аксиом, которые допускаются скрыто, как я выясню это далее.
Долгое время тщательно искали доказательства третьей аксиомы, известной под названием
Геометрия Лобачевского. Если бы возможно было вывести постулат Евклида из других аксиом, то, отбрасывая этот постулат и допуская другие аксиомы, мы, очевидно, должны были бы прийти к следствию, заключающему в себе противоречие; поэтому было бы невозможно на таких положениях построить цельную геометрическую систему.
Но как раз это и сделал Лобачевский. Он допускает сначала, что