Кроме этой, все другие аксиомы Евклида он сохраняет. Из этих гипотез он выводит ряд теорем, между которыми нельзя указать никакого противоречия, и строит геометрию, непогрешимая логика которой ни в чем не уступает евклидовой геометрии. Теоремы, конечно, весьма отличаются от тех, к которым мы привыкли, и вначале кажутся несколько странными.
Так, сумма углов треугольника всегда меньше двух прямых углов; разность между этой суммой и двумя прямыми углами пропорциональна площади треугольника.
Невозможно построить фигуру, подобную данной, но имеющую иные размеры.
Если разделить окружность на
Бесполезно было бы увеличивать число этих примеров; теоремы Лобачевского не имеют никакого отношения к евклидовым, но тем не менее они логически связаны между собой.
Геометрия Римана. Вообразим себе мир, заселенный исключительно существами, лишенными толщины, и предположим, что эти «бесконечно плоские» существа расположены все в одной плоскости и не могут из нее выйти. Допустим далее, что этот мир достаточно удален от других миров, чтобы не подвергаться их влиянию. Раз мы начали делать такие допущения, ничто не мешает нам наделить эти существа способностью мышления и считать их способными создать геометрию. В таком случае они, конечно, припишут пространству только два измерения.
Но предположим теперь, что эти воображаемые существа, оставаясь все еще лишенными толщины, имеют форму поверхности шара, а не форму плоскости, и расположены все на одной и той же сфере, с которой не могут сойти. Какую геометрию они могут построить? Прежде всего, ясно, что они припишут пространству только два измерения; роль прямой линии для них будет играть кратчайшее расстояние от одной точки до другой на сфере, т. е. дуга большого круга; одним словом, их геометрия будет геометрией сферической.
То, что они назовут пространством, будет эта сфера, с которой они не могут сойти и на которой происходят все явления, доступные их познанию. Их пространство будет
Геометрия Римана есть не что иное, как сферическая геометрия, распространенная на три измерения. Чтобы построить ее, немецкий математик должен был отбросить не только постулат Евклида, но, кроме того, еще и первую аксиому:
На сфере через две данные точки можно провести
Между геометриями Римана и Лобачевского существует в некотором смысле противоположность.
Так, сумма углов треугольника:
равна двум прямым в геометрии Евклида;
меньше двух прямых в геометрии Лобачевского;
больше двух прямых в геометрии Римана.
Число линий, которые можно провести через данную точку параллельно данной прямой:
равно единице в геометрии Евклида;
нулю в геометрии Римана;
бесконечности в геометрии Лобачевского.
Прибавим, что пространство Римана конечно, хотя и безгранично, в указанном выше смысле этих двух слов.
Поверхности с постоянной кривизной. Остается возможным одно возражение. Действительно, теоремы Лобачевского и Римана не содержат никакого противоречия; но как бы ни были многочисленны следствия, которые вывели из своих допущений эти два геометра, все же последние должны были остановиться, не исчерпав всех возможных выводов, потому что число их бесконечно. Но тогда кто поручится, что если бы они продолжали свои выводы далее, то все же не пришли бы к противоречию?
Это затруднение не существует для геометрии Римана, если ограничиваться двумя измерениями; в самом деле, геометрия Римана для двух измерений не отличается, как мы видели, от сферической геометрии, которая есть только ветвь обыкновенной геометрии и которая, следовательно, стоит вне всякой дискуссии.