Критерий «удобства», неоднократно использованный Пуанкаре для выбора предпочтительной геометрии и объяснения трехмерности пространства, стал причиной многих недоразумений. Не разъясняя смысл, вкладываемый им в этот неудачный термин, Пуанкаре давал повод для искажения своей позиции. В последующем ему не раз приходилось возражать против попыток явно субъективистски трактовать высказываемые им мысли. Однако в некоторых своих работах он все же отметил объективное основание выбора той или иной теоретической схемы из условий удобства. Так еще в 1887 году в работе «Об основных гипотезах геометрии», впервые поставив вопрос о выборе геометрии для описания физических явлений, Пуанкаре поясняет: «Мы выбрали между всеми возможными группами одну особенную для того, чтобы к ней относить физические явления, подобно тому как мы выбираем систему трех координатных осей, чтобы к ним относить геометрические фигуры. Что же определило наш выбор? Это, во-первых, простота выбранной группы; но есть и другое основание: в природе существуют замечательные тела, называемые твердыми, и опыт говорит нам, что связь различных возможных перемещений этих тел выражается со значительной степенью приближения теми же самыми соотношениями, как и различные операции выбранной группы»[111]. Пуанкаре прямо указывает, что выбор геометрии и группы движений определяется соответствием их движению реальных тел. Почти то же самое пишет он 20 лет спустя в книге «Наука и метод». Язык трех измерений, по его убеждению, приспособлен «к миру, имеющему определенные свойства, и главное из этих свойств заключается в том, что в этом мире существуют твердые массы, перемещающиеся по таким законам, которые мы называем законами движения неизменяющихся твердых тел» (с. 452–453).
Пуанкаре ошибался, заранее предрекая выбор в пользу геометрии Евклида. В то же время, он утверждал, что можно в принципе использовать любую другую внутренне непротиворечивую геометрию. Но эти общие соображения остались неподкрепленными конкретными физическими описаниями явлений на основе различных геометрий. Поэтому долгое время ученые, не принимая геометрический конвенционализм Пуанкаре, пытались его как-то преодолеть. И лишь в последние десятилетия исчезли сомнения в справедливости этого вывода о возможности описания одних и тех же явлений с применением различных геометрий пространства и времени.
То обстоятельство, что наблюдаемые физиками факты укладываются в рамки различных геометрий, вовсе не снимает вопроса о геометрической структуре пространства-времени, отвечающей установленным физическим законам движения материи. Разные геометрические представления одних и тех же физических явлений еще не свидетельствуют о произвольности и условности законов физики или пространственно-временных свойств реального мира, как не свидетельствуют об этом выбор различных единиц измерения физических величин или применение различных систем координат. Истинная или, вернее, естественная геометрия реального пространства-времени только одна, и выделена она тем, что наиболее полно отражая с ее помощью физические явления, ученые в то же время обходятся без вынужденного усложнения физической теории[112]. Используя другие, отличные от нее геометрии, они одновременно подправляют физические законы введением в них дополнительных сил, называемых универсальными, чтобы согласовать теоретическое описание с опытными данными. Эти универсальные силы, одинаковым образом действуя на все материальные объекты, например, на лучи света, на космические частицы, на кометы, позволяют объяснить различные особенности их движения силовым воздействием, а не искривлением пространства. Тем самым, физические теории, включающие универсальные силы, берут на себя часть «геометрической нагрузки». Их уравнения фактически учитывают некоторые геометрические свойства мира.
В своих работах Пуанкаре неоднократно обращался к обсуждению общих и методологических проблем математики и математического творчества. Ни один сколько-нибудь значительный вопрос из области математических наук, дискутировавшийся в то время научными кругами, не был обойден его вниманием. И нередко бывало, что именно он выступал инициатором такой дискуссии или же становился ее активным центром. Многие из рассмотренных им математических проблем и сейчас представляют немаловажный интерес. Так, до сих пор не получили однозначного разрешения обсуждавшиеся им проблемы, связанные с парадоксами теории множеств и классической логики, статусом аксиомы Цермело, взаимоотношением интуиции и логики в математическом познании и некоторые другие вопросы.