Итак, вот в чем значение математической физики. Она должна руководить обобщением, руководить так, чтобы от этого увеличивалась производительность науки. Нам остается рассмотреть, какими путями она этого достигает и как может она это выполнить без опасных уклонений с правильного пути.
Единство природы. Заметим прежде всего, что всякое обобщение до известной степени предполагает веру в единство и простоту природы. Допущение единства не представляет затруднений. Если бы различные части Вселенной не относились между собой как органы одного и того же тела, они не обнаруживали бы взаимодействий — они, так сказать, взаимно игнорировали бы друг друга, и мы, в частности, знали бы только одну из них. Поэтому мы должны задавать вопрос не о том, едина ли природа, а о том, каким образом она едина.
Относительно второго положения дело обстоит сложнее, нельзя быть уверенным, что природа проста. Можем ли мы без опасения считать это допущение справедливым?
Было время, когда простота закона Мариотта служила аргументом в пользу его точности. Сам Френель, сказавший однажды в беседе с Лапласом, что природа не беспокоится об аналитических трудностях, считал себя обязанным дать по этому поводу объяснения, чтобы не встать в слишком резкое противоречие с господствовавшим тогда мнением.
С тех пор взгляды сильно изменились; однако те, которые не верят, что законы природы должны быть просты, все же часто бывают вынуждены поступать так, как если бы они разделяли эту веру. Они не могли бы совершенно отрешиться от этой необходимости, не разрушая тем самым всякой возможности обобщения, а следовательно, и науки.
Ясно, что любой факт может быть обобщен бесконечным множеством способов, из которых надо выбирать, а при выборе можно руководствоваться только соображениями простоты. Возьмем самый обыденный пример — интерполяцию. Между точками, полученными из наблюдений, мы проводим непрерывную, возможно более плавную линию. Отчего мы избегаем угловых точек и слишком резких поворотов? Отчего мы не чертим кривую в виде ряда самых причудливых зигзагов? Оттого, что мы заранее знаем (или считаем, что знаем), что закон, который нужно отобразить, не может быть очень сложным.
Массу Юпитера можно определять или из движений его спутников, или из возмущений больших планет, или из возмущений малых планет. Беря среднюю из величин, полученных по каждому способу, найдем три числа, весьма близкие друг к другу, но все же разные. Можно было бы объяснить этот результат, предположив, что коэффициент притяжения не является одинаковым в этих трех случаях; тогда, конечно, наблюдения были бы воспроизведены гораздо лучше. Почему же мы устраняем такое объяснение? Не потому, что оно было бы нелепо, а потому, что оно страдает бесполезной сложностью. Его примут лишь тогда, когда оно станет обязательным; а пока этого еще нет.
Словом, любой закон обычно считается простым, пока не доказано противоположное. Я только что указал основания, которые внушили физикам это воззрение; но как оправдать его, стоя лицом к лицу с открытиями, каждый день указывающими нам новые детали явлений, все более сложные, все более обильные? Помимо этого, как примирить его с допущением единства природы? Ибо если все вещи находятся во взаимной зависимости, то отношения, в которых принимает участие такая масса объектов, не могут быть просты.
Изучая историю науки, мы замечаем два явления, которые можно назвать взаимно противоположными: то за кажущейся сложностью скрывается простота, то, напротив, видимая простота на самом деле таит в себе чрезвычайную сложность.
Что может быть сложнее запутанных движений планет и что может быть проще закона Ньютона? Природа, играя (как говорил Френель) аналитическими трудностями, комбинацией простых элементов создает тут какие-то гордиевы узлы. Вот пример скрытой простоты, которую надо было обнаружить.
Примерам обратных случаев нет числа. В кинетической теории газов рассматриваются быстро движущиеся частицы, траектории которых, вследствие постоянных столкновений, принимают самые причудливые формы; они бороздят пространство по всем направлениям. Доступный наблюдению результат есть простой закон Мариотта, каждый отдельный факт был сложным, но закон больших чисел восстанавливает простоту в средних величинах. Эта простота — кажущаяся; лишь грубость наших чувств мешает нам видеть действительную сложность.
Множество явлений повинуется закону пропорциональности — почему? Потому что в них встречается какая-нибудь весьма малая величина. Выведенный из наблюдений простой закон является в этом случае лишь применением общего аналитического правила, по которому исчезающе малый прирост функции пропорционален приросту независимой переменной. Так как в действительности наблюдаемые нами приросты не бесконечно малы, а только очень малы, то закон пропорциональности является лишь приближенным и простота — кажущейся. То же самое применимо к правилу суперпозиции малых движений, столь плодотворному по своим применениям и образующему, между прочим, основу оптики.