Читаем О науке полностью

Несколько примеров, быть может, помогут лучше понять мою мысль. Никогда не достиг бы цели тот, кто захотел бы прямо изучить сложное распределение температур в охлаждающемся теле. Но все упрощается, если принять во внимание, что ни одна точка тела не может непосредственно передавать теплоту удаленной точке; теплота будет передаваться лишь точкам, лежащим в непосредственном соседстве; лишь постепенно тепловой поток достигнет других точек тела. Здесь элементарным явлением служит обмен теплоты между двумя смежными точками; этот процесс заключен в тесные пространственные пределы и является относительно простым, если ввести естественное допущение, что на него не влияет температура частиц, лежащих на заметном расстоянии.

Другой пример. Я сгибаю стержень; он принимает весьма сложную форму, прямое изучение которой было бы невозможно; я смогу приступить к ее исследованию, если замечу, что сгибание стержня является результатом деформации весьма малых элементов стержня и что деформация каждого из них зависит исключительно от сил, непосредственно к нему приложенных, а не от сил, действующих на другие элементы.

В этих примерах, которые можно было бы множить без труда, заключено допущение, что не существует действия на расстоянии (по крайней мере на значительном расстоянии). Это — гипотеза; она не всегда является верной — примером служит закон тяготения; поэтому ее надлежит подвергнуть проверке; если она подтверждается хотя бы приближенно, то она ценна, потому что она позволит нам обосновать математическую физику по крайней мере путем последовательных приближений.

Если такая гипотеза не выдерживает проверки, следует искать что-либо аналогичное, ибо есть и другие средства дойти до элементарных явлений. Если несколько тел действуют вместе, то возможно, что их действия независимы и просто складываются друг с другом либо как векторы, либо как скалярные величины. В таком случае элементарным явлением будет действие отдельного тела. В иных случаях задачу сводят к малым движениям, или — более общо — к малым вариациям, которые подчинены известному закону суперпозиции. Наблюденное движение разложится тогда на простые движения, например звук — на гармонические тоны, белый свет — на монохроматические составляющие.

Какими же средствами можно уловить элементарное явление после того как выяснилось, с какой стороны следует его искать?

Прежде всего, часто случается, что, для того чтобы его угадать или — лучше — чтобы угадать то, что есть в нем полезного для нас, вовсе нет необходимости проникать в самый механизм его; достаточно будет применить закон больших чисел. Обратимся опять к примеру распространения теплоты: каждая частица излучает по направлению к каждой соседней частице, но по какому закону — этого нам нет необходимости знать; всякое предположение относительно этого было бы гипотезой безразличной, а следовательно, бесполезной и не поддающейся проверке. В самом деле, благодаря свойствам средних величин и вследствие симметричности среды все различия сглаживаются и результат оказывается всегда одним и тем же, какая бы гипотеза ни была предложена.

Подобное имеет место в теории упругости и в теории капиллярных явлений: близкие друг к другу молекулы притягиваются и отталкиваются, но нам нет нужды знать по какому закону. Достаточно того, что это притяжение действует только на малых расстояниях, что число частиц весьма велико, что среда симметрична, а далее остается лишь пустить в ход закон больших чисел.

В приведенных примерах простота элементарного явления таилась под сложностью непосредственно наблюдаемого результата; но эта простота в свою очередь является призрачной и скрывает за собою весьма сложный механизм.

Лучшим средством дойти до элементарного явления был бы, очевидно, опыт. С помощью искусных экспериментальных приемов нужно было бы разъединить ту сложную связанность, какую природа предоставляет нашему исследованию, а затем тщательно изучать найденные и доведенные до возможной степени чистоты составные элементы. Примером может служить разложение естественного белого луча призмой на монохроматические лучи и поляризатором — на поляризованные лучи.

Перейти на страницу:

Похожие книги