Читаем О науке полностью

С этой точки зрения все науки суть только бессознательные приложения исчисления вероятностей; осудить это исчисление — значит осудить всю науку в целом.

Я не стану долго останавливаться на научных проблемах, где участие исчисления вероятностей является более очевидным.

Такова прежде всего задача интерполяции, где по известному числу значений функции стараются определить промежуточные значения. Упомяну также о знаменитой теории погрешностей наблюдений (к которой еще вернусь позднее), о кинетической теории газов — этой общеизвестной гипотезе, по которой предполагается, что каждая газовая молекула описывает крайне сложную траекторию, но где по свойству закона больших чисел явления, взятые в среднем — в форме, единственно доступной для наблюдения, — подчиняются простым законам, каковы законы Мариотта и Гей-Люссака.

Все эти теории покоятся на законах больших чисел, так что падение исчисления вероятностей, очевидно, увлекло бы их за собой. Правда, они представляют только частный интерес и, за исключением интерполяции, это были жертвы, с которыми можно было бы примириться. Но, как я указал выше, речь шла бы не об этих только частных жертвах — речь шла бы о всей науке, законность которой была бы подвергнута сомнению.

Я знаю, что мне могли бы сказать: «Мы ничего не знаем и все-таки мы должны действовать. Но мы не имеем времени заняться исследованием, достаточным для того, чтобы рассеять наше незнание; кроме того, подобное исследование потребовало бы бесконечного времени. Следовательно, мы должны решаться, не обладая знанием; надо действовать наудачу и следовать правилам, не слишком им доверяя. Я знаю не то, что такая-то вещь истинна, но то, что для меня все же лучше действовать так, как если бы она была истинна». Исчисление вероятностей и, следовательно, наука имели бы не более как только практическое значение.

К сожалению, таким путем трудность не была бы устранена. Игрок желает попытать счастья, он спрашивает у меня совета. Если я ему дам совет, я буду руководствоваться исчислением вероятностей, но я не гарантирую ему успеха. Это то, что я назову субъективной вероятностью. В этом случае можно было бы довольствоваться объяснением, которое я привел выше. Но предположим, что при игре присутствует наблюдатель, который отмечает все ходы, и что игра продолжается долгое время; когда он подведет итог в своей записной книжке, он констатирует, что события распределены согласно законам исчисления вероятностей. Это — то, что я назову объективной вероятностью, и именно это явление нужно объяснить.

Существует множество страховых обществ, которые применяют правила исчисления вероятностей; они выдают своим акционерам дивиденды, объективную реальность которых невозможно оспорить. Чтобы объяснить это, недостаточно ссылаться на наше незнание и на необходимость действовать.

Таким образом, абсолютный скептицизм не может быть принят; мы должны быть осторожны, но не должны все огульно осуждать; необходимо подробное исследование.

I. Классификация проблем вероятности. Чтобы классифицировать проблемы, которые касаются такой темы, как вероятность, можно стать на несколько различных точек зрения и прежде всего на точку зрения общности.

Выше я сказал, что вероятность есть отношение числа благоприятствующих случаев к числу возможных случаев. То, что за недостатком лучшего термина я называю общностью, будет возрастать с числом возможных случаев. Это число может быть конечным, как, например, в случае, когда рассматривается бросание костей, где число возможных случаев есть 36. Это — первая степень общности.

Но если мы спросим, например, какова вероятность того, что точка, расположенная внутри круга, окажется лежащей также внутри вписанного квадрата, то число возможных случаев будет таково же, как число точек в круге, т. е. бесконечно. Это — вторая степень общности. Общность может быть распространена еще далее: можно задаться вопросом о вероятности того, что функция удовлетворяет данному условию; в этом случае существует столько возможных случаев, сколько можно вообразить различных функций. Это — третья степень общности, до которой восходят, например, когда стараются определить наиболее вероятный закон по конечному числу наблюдений.

Можно стать на совершенно иную точку зрения. Абсолютное знание, будучи тождественным достоверности, не оставило бы места для вероятности. Но и абсолютное незнание не привело бы к вероятности: ведь надо все же иметь хоть какую-нибудь осведомленность, чтобы прийти даже к этой недостоверной науке. Проблемы вероятности могут быть, таким образом, классифицированы по большей или меньшей глубине незнания.

Перейти на страницу:

Похожие книги

Все жанры