Иначе обстоит дело со второй проблемой. Возьмем 10 000 первых логарифмов, которые я нахожу в таблицах. Среди этих 10 000 логарифмов я беру наудачу один; какова вероятность, что его третий десятичный знак есть четное число? Вы не затруднитесь ответить: ½ — и в самом деле, если вы просмотрите в таблице третьи десятичные знаки этих 10 000 чисел, вы найдете приблизительно столько же четных цифр, сколько и нечетных.
Или, если желаете, напишем 10 000 чисел, по количеству наших логарифмов; каждое из этих чисел пусть равно +1, если третий десятичный знак четный, и –1 в обратном случае. Возьмем затем среднюю величину из этих 10 000 чисел. Я не затруднюсь сказать, что эта средняя величина, вероятно, равна нулю; если бы я произвел вычисление в действительности, я убедился бы, что она очень мала.
Но эта проверка даже бесполезна. Я мог бы строго доказать, что это среднее меньше 0,003. Чтобы установить этот результат, мне пришлось бы привести довольно длинное вычисление, для которого здесь мало места, и поэтому я ограничусь ссылкой на статью, опубликованную мною в «Revue générale des Sciences» 15 апреля 1899 г. Единственный пункт, на который я должен обратить внимание, следующий: в этом вычислении я опирался только на два факта, а именно, что первая и вторая производные логарифма в рассматриваемом промежутке остаются заключенными в известных пределах.
Отсюда первое следствие: что это свойство справедливо не только для логарифма, но для какой угодно непрерывной функции, так как производные всякой непрерывной функции заключены в определенных пределах.
Если я уже заранее был уверен в результате, то это прежде всего потому, что я часто замечал аналогичные факты для других непрерывных функций; затем потому, что я — более или менее бессознательно и несовершенно — провел в уме рассуждение, которое привело меня к предыдущим неравенствам, подобно тому как опытный вычислитель, не доведя до конца умножения, соображает, что «получится приблизительно столько-то».
И кроме того, так как то, что я назвал бы моей интуицией, есть лишь несовершенный образ истинного рассуждения, то, как выяснилось, наблюдение подтвердило мои догадки, и объективная вероятность оказалась в согласии с вероятностью субъективной.
В качестве третьего примера я выберу следующую проблему: пусть число
2π | , | |
где
1/
Итак, вероятное значение sin
Обсуждение трех предыдущих примеров, столь различных во всех отношениях, до некоторой степени обнаруживает, с одной стороны, значение того, что философы называют принципом достаточного основания, а с другой — важность того факта, что некоторые свойства являются общими для всех непрерывных функций. Изучение вероятности в физических науках приведет нас к тому же результату.
III. Вероятность в физических науках. Перейдем теперь к проблемам, относящимся к тому, что я назвал выше второй степенью незнания; это — те проблемы, в которых известен закон, но неизвестно начальное состояние системы. Я мог бы умножать число примеров, но я возьму только один: каково в настоящее время вероятное распределение малых планет на зодиаке?
Мы знаем, что они подчиняются законам Кеплера: мы можем даже, не изменяя ничего в природе проблемы, допустить, что все их орбиты круговые и расположены в одной и той же известной нам плоскости. Зато мы совершенно не знаем, каково было их начальное распределение. И все же мы, не колеблясь, можем утверждать, что теперь это распределение приблизительно равномерно. Почему?