Читаем О науке полностью

В действительности вероятность выигрыша и в этом случае остается равной ½. Правда, наблюдение показывает, что серии из семи последовательных красных крайне редки; но серия из шести красных, за которой следует один черный, является столь же редкой. Им бросилась в глаза редкость серий из семи красных; но они не обращали внимания на редкость серий из шести красных и одного черного единственно потому, что подобные сочетания меньше поражают внимание.

V. Вероятность причин. Я перехожу к проблемам вероятности причин — проблемам, наиболее важным с точки зрения их применений в науке. Пусть, например, две звезды расположены на небесной сфере очень близко друг к другу. Не является ли эта видимая близость результатом простой случайности, и не находятся ли эти звезды — хотя они расположены почти на одном и том же луче зрения — на очень различных расстояниях от Земли, а следовательно, на значительном отдалении одна от другой? Или мы имеем здесь действительную близость? Вот это и есть проблема вероятности причин. Прежде всего я напомню, что всякий раз, обсуждая проблемы вероятности событий, которыми мы занимались до сих пор, мы всегда должны были выдвигать некоторое условное положение, более или менее оправдываемое. И если чаще всего результат был в известной мере независим от этого условного положения, то это лишь в силу известных гипотез, которые позволили нам a priori отбросить, например, разрывные функции или некоторые нелепые соглашения.

Нечто аналогичное встретим мы, занимаясь вероятностью причин. Некоторое действие может быть произведено причиной A или причиной В. Действие наблюдалось; ищется вероятность того, что оно обусловлено причиной A; это — вероятность причины à posteriori. Но я не мог бы вычислить ее, если бы некоторое более или менее оправдывающееся условное положение не позволило мне наперед знать, какова априорная вероятность того, что причина A вступит в действие; я подразумеваю здесь вероятность этого события для того, кто еще не наблюдал самого действия.

Для большей ясности я возвращусь к примеру игры в экарте, к которому я прибегал выше; мой партнер сдает карты в первый раз и открывает короля — какова вероятность, что это шулер? Обычное применение формул дает 8/9 — результат, очевидно, крайне удивительный. Если исследовать дело ближе, то вычисление оказывается выполненным так, как если бы я, еще не садясь за игорный стол, уже признал, что у меня один шанс против двух за то, что мой партнер — нечестный игрок. Такая гипотеза нелепа, ибо в этом случае я, конечно, не стал бы с ним играть; этим выясняется и нелепость заключения.

Условное положение об априорной вероятности было неоправданным; поэтому и вычисление апостериорной вероятности привело меня к недопустимому результату. Отсюда видна важность предварительного условного положения. Я прибавлю еще, что если совсем не вводить условного положения, то проблема вероятности à posteriori не имела бы никакого смысла; всегда приходится это делать либо явно, либо молчаливо.

Перейдем к примеру более научного характера. Я хочу определить некоторый экспериментальный закон; когда я буду знать его, его можно будет представить с помощью некоторой кривой; я делаю несколько отдельных наблюдений; пусть каждое из них изобразится некоторой точкой. Получив ряд различных точек, я провожу между ними кривую, стараясь возможно меньше уклоняться от них и в то же время сохранить для моей кривой правильную форму, без угловых точек, без слишком резких изгибов, без внезапного изменения радиуса кривизны. Эта кривая представит мне вероятностный закон, и я допускаю, что она не только дает мне значения функции, промежуточные между наблюдаемыми, но что и самые наблюдаемые значения она дает точнее, чем прямое наблюдение (потому-то я и проводил ее вблизи моих точек, но не через самые точки).

Такова проблема вероятности причин. Действиями здесь являются зарегистрированные мною результаты измерений; они зависят от сочетания двух причин — истинного закона явления и погрешностей наблюдения. Задача состоит в том, чтобы, зная действия, отыскать вероятность того, что явление подчиняется такому-то закону, и вероятность того, что наблюдения искажены такой-то погрешностью. Тогда наиболее вероятный закон соответствует проведенной кривой, и наиболее вероятная ошибка наблюдения представится расстоянием соответствующей точки от этой кривой.

Но проблема не имела бы никакого смысла, если бы я до всякого наблюдения не составил себе идею о вероятности à priori того или иного закона и о шансах ошибки, которую я могу совершить.

Если мои инструменты хороши (и это я знал бы до наблюдения), то я не позволю моей кривой значительно уклоняться от точек, представляющих непосредственные измерения. Если же они плохи, то я мог бы отступить от этих точек несколько больше, лишь бы получить кривую, менее извилистую, в целях упорядоченности я мог бы принести и большую жертву.

Перейти на страницу:

Похожие книги