Читаем О науке полностью

Если вы хотите знать, что понимают математики под непрерывностью, то ответа следует спрашивать не у геометра. Геометр всегда так или иначе старается представить себе фигуры, которые он изучает, но его представления являются для него только орудием; занимаясь геометрией, он употребляет пространство так же, как употребляет мел; поэтому следует остерегаться приписывать слишком большое значение случайностям, которые часто имеют не больше значения, чем белизна мела.

Чистому аналитику нечего бояться этой опасности. Он освободил математическую науку от всех посторонних элементов и может ответить на ваш вопрос: что представляет собой на самом деле та непрерывность, о которой рассуждают математики? Многие из них, умеющие размышлять о своей науке, уже сделали это, как например Таннери в своем «Введении в теорию функций одной переменной».

Будем исходить из последовательности целых чисел; между двумя соседними числами вставим одно или несколько промежуточных чисел, потом между этими числами вставим еще новые и так далее до бесконечности. Мы будем иметь, таким образом, неограниченное число членов: это будут числа, называемые дробно-рациональными или соизмеримыми. Но этого еще недостаточно; между этими членами, число которых однако уже бесконечно, надо вставить еще другие, так называемые иррациональные или несоизмеримые.

Прежде чем идти дальше, сделаем одно важное замечание. Непрерывность, понимаемая таким образом, есть не более чем собрание отдельных единиц, расположенных в известном порядке, правда, в бесконечном числе, но внешних друг другу. Это не соответствует обычной концепции, которая между элементами непрерывного предполагает некоторый род внутренней связи, составляющей из них целое, — где не точка предшествует существованию линии, а линия предшествует существованию точки. От знаменитой формулы: непрерывность есть единство во множественности — остается только множественность; единство исчезло. Это обстоятельство не лишает аналитиков основания определять свою непрерывность так, как они это делают, ибо, рассуждая именно об этом, они постоянно спорят друг с другом по поводу строгости. Но для нас достаточно указать, что настоящая математическая непрерывность есть нечто совсем иное, чем непрерывность физиков или непрерывность метафизиков.

Быть может, скажут, что математики, которые довольствуются этим определением, обмануты словами, что надо было бы точно сказать, что представляет собой каждый из промежуточных членов, выяснить, как надо их вставить, и показать, что эта операция возможна. Но это было бы несправедливо; единственным свойством этих членов, входящим в рассуждения о них[3], является свойство находиться прежде или после таких-то других членов; поэтому оно только и должно входить в их определение.

Таким образом, нечего беспокоиться о том, каким способом следует вставлять промежуточные члены; с другой стороны, никто не усомнится, что эта операция возможна, если только не забывать, что это последнее слово на математическом языке означает просто: свободна от противоречия.

Все же наше определение непрерывности не полно, и я возвращаюсь к нему после этого слишком длинного отступления.

Определение несоизмеримых величин. Математики Берлинской школы, и в частности Кронекер, занимаются построением этой непрерывной последовательности дробных и иррациональных чисел, не пользуясь никаким другим материалом, кроме целого числа. С этой точки зрения математическая непрерывность явится чистым созданием разума, в котором опыт совершенно не участвует.

Понятие рационального числа для них не представляет затруднения; предметом их особенных усилий служит определение несоизмеримого числа. Но прежде чем воспроизвести здесь это определение, я должен сделать одно замечание, чтобы предупредить удивление, которое оно не замедлило бы вызвать у читателей, мало знакомых с математическими обычаями.

Математики изучают не предметы, а лишь отношения между ними; поэтому для них безразлично, будут ли одни предметы замещены другими, лишь бы только не менялись их отношения. Для них не важно материальное содержание; их интересует только форма.

Кто забудет это, тот не поймет, что Дедекинд под именем несоизмеримого числа разумеет простой символ, т. е. нечто, совершенно отличное от представления, которое создают себе обыкновенно относительно величины, считая ее измеряемой, почти осязаемой.

Итак, вот каково определение Дедекинда: соизмеримые числа могут быть бесконечным числом способов распределены на два класса при соблюдении условия, что любое число первого класса должно быть больше любого числа второго класса.

Перейти на страницу:

Похожие книги