Если вы хотите знать, что понимают математики под непрерывностью, то ответа следует спрашивать не у геометра. Геометр всегда так или иначе старается представить себе фигуры, которые он изучает, но его представления являются для него только орудием; занимаясь геометрией, он употребляет пространство так же, как употребляет мел; поэтому следует остерегаться приписывать слишком большое значение случайностям, которые часто имеют не больше значения, чем белизна мела.
Чистому аналитику нечего бояться этой опасности. Он освободил математическую науку от всех посторонних элементов и может ответить на ваш вопрос: что представляет собой на самом деле та непрерывность, о которой рассуждают математики? Многие из них, умеющие размышлять о своей науке, уже сделали это, как например Таннери в своем «Введении в теорию функций одной переменной».
Будем исходить из последовательности целых чисел; между двумя соседними числами вставим одно или несколько промежуточных чисел, потом между этими числами вставим еще новые и так далее до бесконечности. Мы будем иметь, таким образом, неограниченное число членов: это будут числа, называемые дробно-рациональными или соизмеримыми. Но этого еще недостаточно; между этими членами, число которых однако уже бесконечно, надо вставить еще другие, так называемые иррациональные или несоизмеримые.
Прежде чем идти дальше, сделаем одно важное замечание. Непрерывность, понимаемая таким образом, есть не более чем собрание отдельных единиц, расположенных в известном порядке, правда, в бесконечном числе, но
Быть может, скажут, что математики, которые довольствуются этим определением, обмануты словами, что надо было бы точно сказать, что представляет собой каждый из промежуточных членов, выяснить, как надо их вставить, и показать, что эта операция возможна. Но это было бы несправедливо; единственным свойством этих членов, входящим в рассуждения о них[3], является свойство находиться прежде или после таких-то других членов; поэтому оно только и должно входить в их определение.
Таким образом, нечего беспокоиться о том, каким способом следует вставлять промежуточные члены; с другой стороны, никто не усомнится, что эта операция возможна, если только не забывать, что это последнее слово на математическом языке означает просто: свободна от противоречия.
Все же наше определение непрерывности не полно, и я возвращаюсь к нему после этого слишком длинного отступления.
Определение несоизмеримых величин. Математики Берлинской школы, и в частности Кронекер, занимаются построением этой непрерывной последовательности дробных и иррациональных чисел, не пользуясь никаким другим материалом, кроме целого числа. С этой точки зрения математическая непрерывность явится чистым созданием разума, в котором опыт совершенно не участвует.
Понятие рационального числа для них не представляет затруднения; предметом их особенных усилий служит определение несоизмеримого числа. Но прежде чем воспроизвести здесь это определение, я должен сделать одно замечание, чтобы предупредить удивление, которое оно не замедлило бы вызвать у читателей, мало знакомых с математическими обычаями.
Математики изучают не предметы, а лишь отношения между ними; поэтому для них безразлично, будут ли одни предметы замещены другими, лишь бы только не менялись их отношения. Для них не важно материальное содержание; их интересует только форма.
Кто забудет это, тот не поймет, что Дедекинд под именем
Итак, вот каково определение Дедекинда: