Может случиться, что между числами первого класса будет одно, которое меньше всех других; например, если поместим в первый класс все числа, большие чем 2, и само 2, а во второй класс — все числа, меньшие чем 2, то ясно, что 2 будет наименьшее из всех чисел первого класса. Число 2 может быть принято в качестве символа этого распределения.
Можно представить себе, напротив, что между числами второго класса имеется одно, большее всех других; так, это имеет место, если первый класс заключает все числа, большие чем 2, а второй — все числа, меньшие чем 2, и само 2. Здесь опять число 2 могло бы быть избрано как символ этого распределения.
Но может также случиться, что нельзя будет найти ни в первом классе число, меньшее чем все другие, ни во втором — число, большее чем все другие. Предположим, например, что в первом классе помещают все соизмеримые числа, квадрат которых больше чем 2, а во втором все те, квадрат которых меньше чем 2. Известно, что нет такого числа, квадрат которого в точности был бы равен 2. И в первом классе не будет, очевидно, числа, меньшего чем все другие, потому что, как бы ни был квадрат некоторого числа близок к 2, всегда можно найти соизмеримое число, квадрат которого будет еще ближе к 2.
С точки зрения Дедекинда, несоизмеримое число
√2
есть не что иное, как символ этого особого способа распределения соизмеримых чисел; таким образом, каждому способу распределения соответствует одно число — соизмеримое или несоизмеримое, — которое и служит символом распределения.
Но удовольствоваться этим значило бы совсем забыть о происхождении этих символов; остается еще выяснить, каким образом математики пришли к тому, что приписали им особого рода конкретное существование, и, с другой стороны, не появляется ли трудность уже и в отношении дробных чисел? Могли бы мы иметь понятие об этих числах, если бы заранее не знали о материи, которую мы понимаем как нечто делимое до бесконечности, т. е. как непрерывность?
Физическая непрерывность. Итак возникает вопрос, не заимствовано ли понятие математической непрерывности просто из опыта. Если бы это было так, то это означало бы, что данные непосредственного опыта, каковыми являются наши ощущения, доступны измерению.
Может явиться искушение поверить, что это и в самом деле так, потому что в последнее время пытались измерить их, и был даже сформулирован закон, известный под именем закона Фехнера, по которому ощущение пропорционально логарифму раздражения.
Но если ближе присмотреться к опытам, которыми пытались обосновать этот закон, то можно прийти к совершенно противоположному заключению. Например, было замечено, что вес
которые можно рассматривать как формулу физической непрерывности. Эта формула заключает в себе недопустимое разногласие с законом противоречия; необходимость избежать его и заставила нас изобрести идею математической непрерывности.
Итак, необходимо заключить, что это понятие всецело создано разумом, но что опыт доставил ему повод для этого.
Мы не можем допустить, что два количества, равные одному и тому же третьему, не равны между собой; и это обстоятельство вынуждает нас предположить, что
Создание математической непрерывности.