После проявления пленки можно составить представление о скоростях и направлении морского течения за неделю. Описанными примерами, конечно, не исчерпываются возможные применения ультразвуковых измерителей скоростей потоков. Эти приборы, несомненно, найдут себе широкое применение в самых различных областях человеческой деятельности.
Ультразвуки широко применяются при определении размеров тел. На рис. 60 изображен сконструированный В. С. Соколовым прибор, позволяющий весьма точно измерять толщину предметов, сделанных из металла, пластмассы, дерева и т. п.
К металлической стенке, толщину которой желательно измерить, прижимается специальный излучатель. Частота излучаемой волны плавно изменяется. Если частота колебаний излучателя равна собственной частоте колебаний стенки или кратна ей, то колебания, совершаемые стенкой, будут особенно интенсивны.
Колебания, совершаемые кварцевой пластинкой, превращаются особым приспособлением в звуковые волны. Это дает возможность определить интенсивность колебаний стенки и на слух. Для каждого материала прибор имеет свою шкалу, градуированную непосредственно в сантиметрах. При параллельных и гладких стенках ошибка в измерении толщины составляет доли процента. Если поверхность неровная, ошибка увеличивается до 2–5 процентов.
Этим прибором можно производить измерения и в том случае, если противоположная излучателю поверхность стенки граничит с жидкостью. Так удается проверять толщину стенок водопроводных труб, не нарушая работы водопровода. Вполне возможно также создание аппарата, который позволит определять толщину накипи на стенке парового котла, не прерывая его работы.
Прибор открывает возможности для измерения так называемой разностенности труб (различия в толщине стенки трубы, измеренной по ее сечению). На рис. 61 изображено сечение стенок трубы, определенное при помощи ультразвукового измерителя толщины.
Ультразвуки позволяют определять неоднородности в стекле, измерять упругие свойства различных сортов стекла. Изучая изменение скорости распространения ультразвуков в твердых телах, можно исследовать превращения, которые в них происходят при изменении температуры или намагниченности тела (в ферромагнитных телах), переходы от одной структуры твердого тела к другой и т. п.
Незадолго до своей смерти профессор С. Я. Соколов сделал новое замечательное изобретение. Сконструированный им прибор дает возможность рассматривать в увеличенном виде предметы, заключенные в непрозрачную для света оболочку; даже тончайший слой воздуха, образовавшийся под слоем серебра в посеребренной пластинке, может быть безошибочно обнаружен этим прибором.
Глава 7.
УЛЬТРАЗВУКОВОЙ МИКРОСКОП
Для того чтобы понять действие ультразвукового микроскопа, вспомним те свойства световых лучей, которые используются в обычном оптическом микроскопе.
Если на пути солнечных лучей поставить двояковыпуклое стекло, произойдет преломление лучей и они соберутся в одной точке, в фокусе. Линзы дают возможность управлять движением лучей света и получать изображения предметов, увеличенные во много раз. В различных веществах световые лучи распространяются с различной скоростью. Именно эта разница в скоростях распространения и является причиной преломления лучей.
Распространение ультразвуковых волн подчиняется тем же самым законам, что и распространение световых волн. Ультразвуковая волна может отражаться и преломляться так же, как отражаются и преломляются световые волны. С помощью специальных ультразвуковых линз и собирающих зеркал физики научились управлять движением ультразвуковых волн.
Скорость ультразвука в жидкости, называемой четыреххлористым углеродом, значительно меньше, чем в воде, Приготовив из тонкой алюминиевой фольги кожух в форме двояковыпуклой чечевицы и наполнив его четыреххлористым углеродом, мы получим ультразвуковую линзу. Такая линза будет собирать идущие в воде ультразвуковые лучи в одну точку. Однако в воздухе эта линза будет рассеивать ультразвук, делать волну расходящейся, так как скорость звука в четыреххлористом углероде значительно больше, чем в воздухе.
Обычно ультразвуковые линзы делают из твердых веществ. При этом необходимо помнить, что скорость звука в твердых телах значительно больше, чем в жидкостях или газах. Этим объясняется то, что собирающие ультразвуковые линзы в этом случае имеют форму вогнутых, а не выпуклых чечевиц. Рассеивающие же линзы должны быть выпуклыми. На рис. 62 изображена ультразвуковая линза из пластической массы, известной под названием плексигласа. Для лучшей передачи колебаний кварцевая пластинка