Читаем О происхождении времени. Последняя теория Стивена Хокинга полностью

Однако ум одного из величайших научных революционеров XX столетия с новой квантовой механикой смириться никак не мог. Эйнштейн приехал на Пятый Сольвеевский конгресс в состоянии глубокой неудовлетворенности квантовой теорией. Он отклонил приглашение Лоренца сделать доклад и, как рассказывали, во время конференции был молчалив. Однако споры шли не только на заседаниях. Все ученые жили в одном отеле, и там, за общим обеденным столом, Эйнштейн вел себя гораздо свободнее. Нобелевский лауреат Отто Штерн оставил нам свидетельство очевидца: «Эйнштейн спускался к завтраку и тут же принимался высказывать свои опасения по поводу новой квантовой теории. Он каждый раз выдумывал прекрасный мысленный эксперимент, из которого было видно, что в самом сердце теории заключено логическое несоответствие… Бор внимательно выслушивал его, а вечером, за ужином, подробно разъяснял суть противоречия и указывал выход из него»[160].

Эйнштейн резко выступал против квантовомеханической идеи, что частица могла оказаться в определенном месте, когда ее наблюдают, но имела только некоторую вероятность оказаться в той или иной точке, когда не подвергалась наблюдению. «Физика есть попытка воспринять реальность такой, какова она есть, независимо от того, наблюдаем мы эту реальность, или нет»[161], – возражал он. В шутку он спрашивал, необходимо ли наблюдателю быть человеком, чтобы частица заняла определенное положение, или будет достаточно, если на нее случайно посмотрит, скажем, мышка.

ИСТОРИЯ ВСЕЛЕННОЙ ЗАВИСИТ ОТ ВОПРОСА, КОТОРЫЙ ВЫ ЕЙ ЗАДАЕТЕ.

Рис. 40. Нильс Бор и Альберт Эйнштейн на Шестом Сольвеевском Конгрессе в Брюсселе (Бельгия), 1930 г.


Вероятностная природа квантовой механики была для Эйнштейна сигналом неполноты теории. Он считал, что должен существовать более глубокий уровень описания, который давал бы объективное и адекватное представление физической реальности, безотносительно к каким-либо актам наблюдения. «[Квантовая] теория дает прекрасные результаты, но вряд ли делает нас ближе к разгадке Его секретов, – писал он Борну. – Как бы там ни было, я убежден, что Он не играет в кости»[162]. В противоположность Эйнштейну Нильс Бор, который был так же силен в философии, как и в математике, интуитивно был глубоко убежден, что квантовая механика непротиворечива. Бор серьезно принимал центральное положение квантовой теории: акт наблюдения – тот самый вопрос, который мы задаем Природе, – влияет на то, как именно Природа проявляет себя. Он придерживался принципа «никакое явление не является реальным, пока оно не станет наблюдаемым».

И вышло так, что на Пятом Сольвеевском конгрессе был сделан первый шаг в одном из величайших научных споров XX века: в споре Эйнштейна с Бором. Что было на кону? Судьба квантовой революции.

Один из аспектов их спора касался ключевого вопроса о причинности и детерминизме в физике. Квантовая механика со своими случайными скачками и вероятностными предсказаниями очевидным образом разрушает столь знакомую нам по классической физике прямую причинную связь между тем, где мы находимся сейчас и где мы окажемся в следующий момент. Является ли этот недостаток причинности и детерминизма в нашем описании Природы лишь временным техническим обстоятельством (позиция Эйнштейна) или фундаментально новым свойством физической теории (позиция Бора)?

Но дискуссия затрагивала и более глубокую онтологическую сторону квантовой механики. В ответ на возражения Эйнштейна Бор был вынужден прояснить, что именно побуждает волновые функции в квантовой механике переходить от туманных и смутных наложений различных реальностей к вполне определенной реальности ежедневного опыта. Мы не наблюдаем никаких наложений реальностей: экспериментаторы находят частицы либо здесь, либо там, но не здесь и там одновременно. Как же именно это происходит? Дерзкий ответ, который давала на этот вопрос копенгагенская школа Бора, заключался в том, что этот переход происходит из-за самого вторжения в реальность экспериментатора. Бор полагал, что сам акт измерения вынуждает Природу определиться и проявить ту или другую реальность. Когда мы измеряем, к примеру, положение частицы, мы воздействуем на нее – скажем, направляя на нее лазерный луч. Это воздействие, утверждал Бор, вызывает коллапс распределенной в пространстве волновой функции частицы, приводя ее к пику в единственном из ее бесчисленных возможных положений – в наблюдаемом. Выключим лазер – и волновая функция снова распространится повсюду, непрерывно и плавно изменяясь от точки к точке в соответствии с уравнением Шрёдингера, что я и описал в главе 3. Возвратимся к измерениям – и волновая функция частицы снова сконцентрируется в состояние с определенным положением.

Перейти на страницу:

Похожие книги

Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература