Неувязкой схемы Бора было то, что эти внезапные коллапсы совершенно не согласуются с уравнением Шрёдингера. Волновые функции, которые подчиняются этому уравнению, не могут резко коллапсировать – они непрерывно колеблются, все время оставаясь гладкими и непрерывными. Получалось, что своей интерпретацией того, что происходит во время акта наблюдения, Бор приписывал наблюдателям и их измерениям особую роль, что совершенно не вписывалось в математические рамки теории.
Копенгагенская схема сводится к так называемой инструменталистской интерпретации квантовой теории. Она предполагает существование фундаментального расхождения между тем, что мы способны измерить нашими инструментами, и описываемой уравнениями физической реальностью. «Наши измерения имеют такое же отношение к тому, что они измеряют, какое телефонный номер имеет к его абоненту», – как однажды выразился по поводу копенгагенской схемы Эддингтон[163]
. Но такой инструменталистский подход создает глубокую эпистемологическую проблему – что же тогда в действительности описывает квантовая механика? Копенгагенская интерпретация на эту загадку никакого света не проливает. По сути, она стремится вообще уклониться от этого вопроса, настаивая на четком разделении между квантовым миром атомов и субатомных частиц – миром, управляемым уравнением Шрёдингера, – и внешней фоновой реальностью, в которой находятся макроскопические экспериментаторы со своими приборами, да и вся остальная Вселенная, подчиняющаяся классическим законам. Коллапс волновой функции в ходе «акта измерения» был мостиком, который Бор перебрасывал между этими двумя обособленными мирами, – примерно так же, как антропный принцип позволяет выбрать островную вселенную в мультивселенной. Обе эти операции были предназначены для связи объективного математического формализма с физическим миром наших наблюдений – но обе не сработали, потому что создаваемые ими соединительные арки оставались внешними по отношению к структуре теорий, которые эти операции призваны были завершить.Бор и Эйнштейн много лет оттачивали свои аргументы в этом споре, но так никогда и не пришли к согласию. Подводя его итог, мы высоко ценим глубокую идею Бора о том, что процесс наблюдения играет ключевую роль в обуславливании физических явлений в квантовой Вселенной. С другой стороны, его описание этого процесса в терминах резкого коллапса волновой функции глубоко несостоятельно. Сегодня все говорит за то, что математический аппарат Шрёдингера приложим не только к микроскопическим коллективам из нескольких частиц, но и к гораздо более крупным конгломератам, составляющим макроскопические системы, – включая лаборатории, наблюдателей и в конечном счете Вселенную в целом. Следовательно, Эйнштейн был прав, когда его не убеждала схема Бора. Он, однако, ошибался, пытаясь осуществить мечту об альтернативной физической теории, основанной на предсказательной схеме, которая бы снова сделала акт наблюдений принципиально несущественным.
Выход из этого тупика в конце концов нашелся – в результате тщательно выполненного включения акта наблюдения в математический формализм квантовой теории. Этот синтез вывел квантовую механику гораздо дальше даже того, что предвидел Нильс Бор. Именно к этому мы теперь и переходим.
Все началось с выполненной в середине 1950-х блестящей работы Хью Эверетта III, студента Джона Уилера. Сначала он занимался теорией игр, но после того, как услышал доклад Эйнштейна о квантовом измерении, заинтересовался этой проблемой. Эверетт разрушил стену, воздвигнутую Бором между квантовым микромиром и классическим макромиром. Его ключевая идея состояла в том, чтобы принять всерьез математический аппарат квантовой механики и применить его ко всему. Допустим, предположил он, что никакого коллапса нет, а есть лишь единая универсальная волновая функция, включающая наблюдателей и все остальное, гладко и непрерывно эволюционирующая и в процессе своей эволюции проходящая, в духе Фейнмана, все возможные пути своей истории. То есть Эверетт сделал грандиозный шаг: начал думать о квантовом мире изнутри, как о замкнутой системе, без какого-либо вмешательства извне. Эту точку зрения иллюстрирует рис. 41, на котором кот Шрёдингера, наблюдатель и вся его лаборатория помещены в один большой ящик.
Рис. 41. Эверетт увидел Вселенную как закрытую квантовую систему, нечто вроде большого ящика, содержащего не только частицы и эксперименты, но и наблюдателей, их оборудование и, в принципе, все остальное. Показанные на рисунке возможные истории этой «вселенной в ящике» включают различные варианты: решил ли наблюдатель посмотреть, как поживает кот, когда именно он решил это сделать, распалось ли уже к этому моменту радиоактивное ядро, как эта ситуация была зарегистрирована и как ее интерпретировал мозг наблюдателя, и т. д., и т. п. Эверетт искал такую формулировку квантовой механики, которая предсказывала бы вероятности различных историй происходящего в ящике, но без каких-либо наблюдений извне или другого внешнего вмешательства.