Выполненный Планком в 1900 году теоретический вывод спектра чернотельного излучения был зарей квантовой революции. Сегодня, когда бы планковский спектр ни обнаружился в природе, физики считают это несомненным признаком стоящего за этим излучением квантового процесса. Именно такого вида процесс и рассматривал Хокинг. Стивен глядел на черную дыру под полуклассическим углом, изучая квантовое поведение вещества, движущегося вокруг черной дыры в создаваемой ею классической искривленной геометрии. К своему удивлению он обнаружил, что квантовые процессы вблизи поверхности горизонта, точки невозврата в теории относительности, порождали слабый поток теплового излучения, устремляющегося во всех направлениях от черной дыры. Стивен сделал следующий шаг и вычислил температуру T черной дыры, выведя для этого формулу, которая впоследствии была выбита на медальоне, изображенном на рис. 51.
В этой формуле буквой
Рис. 51. На медальонах, выпущенных по случаю захоронения урны с прахом Стивена в Вестминстерском аббатстве 15 июня 2018 года, выбита полученная им формула температуры черной дыры вместе со схематическим изображением процесса излучения Хокинга.
Открытие Стивена было как гром среди ясного неба. Он объявил о полученном результате в феврале 1974 года, в ошеломляющем докладе на конференции по квантовой гравитации в Лаборатории Резерфорда, в Эпплтоне близ Оксфорда. «Черные дыры раскалены добела», – объявил он ошарашенной аудитории. Конечно, это было его фирменное преувеличение. Так как черные дыры – это остатки звезд, подставляя в формулу количественные значения, мы получим температуру меньше, чем 0,0000001 кельвина, что гораздо холоднее даже обжигающе холодного CMB-излучения с его 2,7 К. Так что вряд ли нам доведется когда-либо наблюдать излучение черной дыры. Но это лишь небольшое практическое неудобство.
В теоретическом смысле излучение Хокинга имеет революционное значение – оно покончило с классическим образом черных дыр как пустых бездонных ям в пространстве-времени, из которых ничего не может выбраться.
Дело в том, что тепловое излучение обычно возникает в процессе движений внутренних составляющих объекта. Именно поэтому температура идет рука об руку с энтропией, введенной Больцманом мерой количества микроскопических расположений составных частей системы, которые оставляют макроскопические свойства системы неизменными. В свою очередь, энтропия тесно связана с информацией – основная идея этого понятия в том, что каждая материальная частица и каждая частица силы во Вселенной содержит в себе скрытый ответ на вопрос типа «да – нет».
Грубо говоря, более высокая энтропия означает, что, не меняя своих общих макроскопических свойств, система может накапливать в своих микроскопических деталях больше информации. Теперь из своей формулы температуры черных дыр Хокинг немедленно мог вывести выражение для содержащегося в них количества энтропии
Вообще-то, Хокинг был не первым, кто предположил, что черные дыры обладают энтропией. Еще в 1972 году израильско-американский физик Якоб Бекенштейн выдвинул идею, что энтропия черных дыр пропорциональна площади A поверхности их горизонта. В то время почти все в научном сообществе – и Стивен впереди всех! – отвергали идею Бекенштейна, потому что, ну, черные дыры же не излучают, а значит, никакой энтропии быть у них не может. Своим открытием излучения (излучение Хокинга) Стивен неопровержимо доказал, что Бекенштейн был прав.