Читаем О происхождении времени. Последняя теория Стивена Хокинга полностью

И что нам теперь со всем этим делать? Формула энтропии ничего не говорит нам ни о том, как черные дыры хранят свои зеттабайты информации, ни даже о том, действительно ли квантовые чипы покрывают непостижимые поверхности их горизонтов событий. Энтропия также не определяет списка тех вопросов, на которые предположительно должны дать ответы типа «да-нет» хранящиеся в этих чипах биты информации. Она просто отмечает, что биты должны существовать.

Все запутывается еще больше, если представить, что могло бы случиться со скрытой информацией, когда черная дыра стареет. Масса черной дыры, M, входит в знаменатель формулы температуры. Поэтому, если черная дыра понемногу теряет массу, излучая энергию и частицы, ее температура растет, отчего дыра сияет все ярче и теряет массу все быстрее. Следовательно, излучение Хокинга, хоть и запускается медленнее, чем мы можем себе представить, является самоподдерживающимся процессом, который в конечном счете приводит к исчезновению черных дыр. Эта особенность не ускользнула от Хокинга[185]. «Черные дыры не вечны, – писал он. – Они испаряются с возрастающей скоростью, пока не исчезают, взрываясь с гигантской силой».

Но какова же судьба огромного количества информации, хранящейся внутри черной дыры, когда она, излучая, теряет массу и в конечном счете испаряется?

Здесь, по всей видимости, есть два разумных сценария. В первом информация теряется навсегда. Черные дыры – абсолютные стиратели информации. Если вспомнить о всепоглощающей мощи черных дыр, такой исход может показаться вполне естественным. Но проблема в том, что этот сценарий запрещен квантовой теорией. Ее основные правила требуют, чтобы волновая функция любой системы эволюционировала с сохранением информации. Так должно быть всегда. Квантовая эволюция может преобразовать информацию до неузнаваемости, но никогда не может ее необратимо уничтожить. Это свойство связано с очевидным требованием, что в квантовой теории полная сумма всех вероятностей должна равняться единице, что бы ни происходило. Закон сохранения информации в квантовой физике, к примеру, означает, что если сжечь энциклопедию, то в принципе можно восстановить всю хранившуюся в ней информацию из пепла. Подобным же образом, если квантовая механика утверждает, что информация хранится вблизи горизонта событий черных дыр – а у нас нет никакой очевидной причины в этом сомневаться, – то, когда черная дыра исчезнет, каждый бит информации должен в конце концов снова выйти наружу.

Теперь рассмотрим второй сценарий. Может быть, вся информация утекает из черной дыры, зашифрованная в излучении Хокинга? Процесс испарения идет невероятно долго, так что эта версия не кажется неправдоподобной. Более того, это было бы вполне совместимо с квантовой механикой. Увы, вычисления Стивена этого не подтверждают. Излучение Хокинга не уносит информацию. Когда черная дыра теряет часть своей массы в форме излучения Хокинга, спектр этого излучения не имеет абсолютно никаких особенностей – он совершенно гладкий. Ничего в этом излучении не помогает сделать каких бы то ни было выводов ни о микроскопической структуре черной дыры, ни о ее истории. Согласно Хокингу, когда черная дыра излучает последний грамм своей массы и исчезает, все, что остается, – облако хаотического теплового излучения, из которого даже в принципе невозможно узнать, было ли оно когда-то черной дырой – не говоря уж о том, какой именно. Испаряющиеся черные дыры, заявлял Хокинг, фундаментальным образом отличаются от горящих энциклопедий.

Это парадокс. Когда черные дыры испаряются, информация оказывается невосстановимо потерянной, но квантовая теория говорит, что это невозможно. Постепенно до физиков дошло, что в своем остроумном мысленном эксперименте Стивен набрел на фантастически глубокую и трудную проблему, возникающую, когда теория относительности и квантовая теория одновременно применяются для решения одной и той же задачи. Построив то, что казалось идеально удачным полуклассическим сплавом обеих теорий[186], он показал, что бездна, разделяющая эти теории, на деле гораздо глубже и шире, чем он или кто-либо другой мог подумать. Парадокс судьбы информации, скрытой внутри испаряющихся черных дыр, стал самой интригующей загадкой теоретической физики конца XX века, доводившей до умоисступления не одно, а два поколения физиков. В каком-то смысле эта проблема оказалась современным аналогом загадки аномальной орбиты Меркурия в XIX столетии. Тогда искажение формы орбиты Меркурия бросило вызов теории Ньютона. Теперь информационный парадокс черной дыры стал маяком, указывавшим путь в поиске объединенной физической теории. Физики чувствовали, что, если они смогли бы развязать завязанный Хокингом узел и понять, что происходит со скрытой в черной дыре информацией, когда дыра прекращает свое существование, они проложили бы путь к слиянию принципов теории относительности и квантовой теории в единых и согласованных рамках.

Перейти на страницу:

Похожие книги

Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература