Читаем О происхождении времени. Последняя теория Стивена Хокинга полностью

В 1911 году по приглашению бельгийского промышленника Эрнеста Сольвея пионеры квантовой теории собрались в Брюсселе на одну из самых первых международных физических конференций. Это было время, когда международное сотрудничество культивировалось в Бельгии на уровне государственной политики. Сольвей был свободомыслящим мечтателем, который, впрочем, сколотил состояние на том, что изобрел новый процесс синтеза кальцинированной соды и создал разветвленную сеть ее производства и доставки. Потом он отошел от дел и стал заядлым альпинистом – несколько раз совершал восхождения на Маттерхорн и даже сумел увлечь альпинизмом бельгийского короля Альберта I, что в конечном счете привело к непредвиденным и катастрофическим последствиям[94].

Первый Сольвеевский конгресс, проходивший в шикарном отеле «Метрополь» в центре Брюсселя, быстро приобрел поистине легендарный статус: именно на нем ученые наконец осознали грандиозное революционное значение ранних квантовых идей. Он обозначил водораздел между классической физикой XIX века и физикой квантов, которой суждено было царить в веке XX. Председательствовал на конгрессе знаменитый голландский физик Хендрик Лоренц; в его вступительной речи ясно слышались растерянность и ошеломление, которые этот мэтр классической физики чувствовал при первом столкновении с квантовым миром. «Современные исследователи сталкиваются со все более и более серьезными трудностями, когда пытаются описать движение малых частиц вещества… В настоящее время мы еще далеки от полностью удовлетворительных результатов… Напротив, мы сейчас видим, что оказались в тупике: старые теории оказались не в состоянии проникнуть сквозь тьму, обступившую нас со всех сторон»[95]. Однако на этой конференции, обсудив все, не договорились ни о чем. По-прежнему не было согласия по вопросу о том, можно ли каким-то образом подлатать классическую физику, чтобы она могла приспособиться к существованию квантов. Общее настроение хорошо выразил Эйнштейн: «Квантовая болезнь выглядит все более безнадежной. Никто ничего, в сущности, не знает. Вся эта история доставила бы наслаждение отцам-иезуитам. Общее впечатление от конференции – плач на развалинах Иерусалима».

Все изменилось в середине 1920-х, когда новое поколение квантовых физиков разработало для описания взаимодействия атомов и субатомных частиц фундаментально новый аппарат: квантовую механику.

Центральным положением новой механики стал знаменитый принцип неопределенности, сформулированный молодым немецким гением Вернером Гейзенбергом: невозможно одновременно знать и точное положение частицы, и ее скорость. Сам Гейзенберг выразил это так: «Чем более точно определено положение [частицы], тем с меньшей точностью в этот момент времени известно ее количество движения [или скорость], и наоборот»[96]. Максимум, на что можно надеяться в квантовой механике, – это «размытая картинка», в которой положения и скорости частиц известны приближенно.

В сущности, все измеримые величины подвержены квантовой неопределенности в степени, определяемой принципом Гейзенберга. Эту неопределенность невозможно устранить более внимательным рассмотрением ситуации или измерением параметров частиц при помощи какого-нибудь хитроумного способа, позволяющего обойти указанный принцип. В этом отношении дело обстоит не так, как, скажем, при случайных изменениях курсов акций на фондовой бирже, которые только кажутся непредсказуемыми, – просто люди не располагают всей полнотой информации, необходимой для вычисления будущего поведения курсов ценных бумаг. Квантовая неопределенность Гейзенберга имеет совершенно иную, фундаментальную природу. Соотношение Гейзенберга налагает жесткие ограничения на количество информации, которое в принципе можно извлечь из физических систем. Получается любопытная вещь: квантовая механика оказывается теорией, которая рассказывает нам не только о том, что именно мы знаем, но и о том, чего мы не можем узнать. Именно эта странная особенность окажется ключевой, когда в главах 6 и 7 мы будем рассматривать мультивселенную с квантовой точки зрения.

Великолепным достижением основателей квантовой механики середины 1920-х было описание этой квантовой «размытости» в рамках соответствующего математического формализма. Нет ничего удивительного в том, что построенная ими теория давала гораздо более текучую и скользкую картину механики, чем та, которую предлагал ее привычный классический вариант. Например, квантовая механика потребовала забыть о старинной мечте научного детерминизма, об идее, что наука должна уметь давать точные и определенные предсказания будущего хода событий. Взамен появилось новое представление: мы можем предсказать лишь вероятности различных возможных исходов измерений. Квантовая механика утверждает, что, если мы снова и снова повторяем один и тот же эксперимент, результат его, вообще говоря, не будет каждый раз одним и тем же.

Перейти на страницу:

Похожие книги

Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература