Читаем О происхождении времени. Последняя теория Стивена Хокинга полностью

Если Уилер был мечтателем, то Фейнман – человеком действия. Уилер размышлял о глубоком прошлом и отдаленном будущем, об основаниях физической реальности и фундаментальной природе научного поиска. Фейнман стремился заставить физику работать здесь и сейчас. «Все, что меня интересует, – это попытаться найти систему правил, с помощью которых можно делать предсказания, доступные экспериментaльной проверке, и не заходить чересчур далеко за пределы этой системы», – говорил он[99]. В таком духе в конце 1940-х Фейнман приступил к разработке более интуитивного и практического подхода к квантовым частицам и их волновым функциям. Идея Фейнмана состояла в том, чтобы представить частицы в виде локализованных объектов, но таких, которые, двигаясь из одной точки в другую, следуют сквозь пространство-время всеми возможными путями (см. рис. 21). Классическая механика полагает, что объекты выбирают в пространстве-времени единственную траекторию. Следовательно, классическая система имеет уникальную и четко определенную историю. Квантовая же механика, утверждал Фейнман, предполагает более широкий взгляд на историю системы: она исходит из того, что все возможные пути реализуются одновременно, хотя некоторые из них более вероятны, чем другие.


Рис. 21. Классическая механика Ньютона требует, чтобы частицы перемещались между двумя точками A и B в пространстве-времени единственным путем. Квантовая механика говорит, что частица выбирает все возможные траектории. Теория квантов предсказывает только вероятность прибытия частицы в точку B по траектории, представляющей собой взвешенное среднее всех путей между A и B.


Например, эксперимент с двумя щелями Фейнман понимал так: индивидуальные электроны следуют от пушки до экрана не по одному, а по всем возможным путям. Один путь ведет электрон сквозь левую щель, другой сквозь правую, по третьему электрон может сначала пройти через правую щель, затем вернуться обратно через левую, совершить разворот и снова пройти через левую щель. Следует рассмотреть все возможные пути – или истории – электрона, какими бы абсурдными они ни были, говорил Фейнман, и все эти пути вносят свой вклад в картину, которую мы видим на экране. Описание Фейнманом движения электрона немного напоминает движение по одному из альтернативных маршрутов, предлагаемых устройством GPS, если не считать очень необычной – и глубоко квантовой – особенности: в отличие от маршрутов такси, электроны выбирают все маршруты. Именно так и входит в эту схему квантовая неопределенность. Как выразился Фейнман: «Электрон делает, что хочет. Он просто летает во всех направлениях и с любой скоростью, вперед или назад во времени, как ему заблагорассудится, а затем вы складываете амплитуды [этих путей], и это дает вам волновую функцию»[100].


Рис. 22. Ричард Фейнман (справа) беседует с Полем Дираком на конференции по относительности, проходившей в 1962 году в Варшаве (Польша).


Чтобы предсказать вероятность того, что электрон попадет в данную точку экрана, Фейнман связал с каждым путем электрона некоторое комплексное число, которое определяло вклад этого пути в значение вероятности, и то, как этот путь интерферирует с соседними путями. Это число позволяло приписать каждому индивидуальному пути математические свойства волнового фрагмента. Затем Фейнман записал очень красивое уравнение, альтернативное уравнению Шрёдингера, которое позволяет сконструировать волновую функцию частицы путем сложения вкладов всех путей, заканчивающихся во всех точках. Характерная интерференционная картина на экране получается из переплетения выраженных в фейнмановских суммах траекторий, выходящих из обеих щелей. Математически это получается потому, что комплексные числа, ассоциированные Фейнманом с каждым путем, дают либо усиление, либо ослабление путей друг другом – как это происходит и с волновыми фрагментами.

Фейнмановское описание ситуации с двумя щелями дает нам пример отсутствия какой-либо надежды определить по одним только наблюдениям экрана, через которую из щелей электрон в действительности пролетел. И это не удивительно. Так как в квантовой механике мы имеем не одну, но много историй, разыгрывающихся одновременно, она очевидным образом ограничивает наши суждения о прошлом. Квантовое прошлое внутренне «размыто» – это вовсе не та четкая и определенная история, какие мы обычно ассоциируем с прошлым[101].

Фейнмановская схема «суммирования историй» дает нам в высшей степени эффективный и точный подход к квантовой теории вообще. В соответствии со своей основной идеей этот подход стал называться квантовым формализмом «интегрирования по путям» или «суммирования по историям». По Фейнману мир получается немного похожим на средневековый фламандский гобелен – на ткань, состоящую из переплетения пересекающихся путей, из сочетания мириадов возможностей, которые в своем единстве образуют согласованную картину реальности.

Перейти на страницу:

Похожие книги

Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература