Все видимые формы материи и три перечисленных вида сил, управляющие взаимодействиями частиц, связаны прочным теоретическим основанием: Стандартной моделью физики элементарных частиц. Разработанная в 1960-х и в начале 1970-х годов, Стандартная модель есть квантовая теория, описывающая частицы вещества и силы в терминах полей, волнообразно колеблющихся субстанций, рассеянных в пространстве. В терминах Стандартной модели частицы материи, такие, как электроны и кварки, – не что иное, как локальные возбуждения распределенных в пространстве полей. Подобные частицам возмущения силовых полей, действующих между частицами вещества, известны как обменные частицы или бозоны. Например, фотоны, обменные частицы, переносящие электромагнитную силу, – это подобные частицам индивидуальные кванты электромагнитного силового поля.
Теоретическое обоснование Стандартной модели в терминах квантовых полей глубоко определяет способ описания микроскопических процессов в мире частиц в рамках этой модели. Возьмем взаимодействие между двумя электронами. Когда они сближаются друг с другом, они отклоняются и рассеиваются, так как одноименные электрические заряды отталкиваются. Стандартная модель описывает этот процесс вполне осязаемым способом: как обмен фотоном между этими электронами. Когда два электрона оказываются внутри сферы действия друг друга, мы представляем, что один из них испускает фотон, а другой его поглощает. Каждый электрон в результате этого обмена испытывает легкую отдачу, из-за чего их траектории расходятся (см. рис. 33). Но это не все. По правилам фейнмановской формулировки квантовой механики в виде «суммирования по историям», чтобы вычислить значение угла рассеяния электронов, мы должны сложить все возможные способы, которыми эти два электрона могут обменяться одним или несколькими фотонами. Множественность историй обмена означает, что мы не можем, в полном соответствии с принципом неопределенности Гейзенберга, точно определить, где и когда этот обмен произошел.
В то время как фотоны лишены массы, как лишены ее и переносящие гравитацию гравитоны, бозоны, ответственные за слабое и сильное ядерное взаимодействие, очень массивны. Именно поэтому ядерные силы действуют на столь коротких расстояниях, ограниченных микроскопическими масштабами атомного ядра. В целом, чем больше масса обменных частиц, тем меньше диапазон расстояний, на которых действуют переносимые ими силы. Именно безмассовость микроскопических квантов электромагнетизма и гравитации позволяет этим силам действовать в масштабах всей Вселенной.
Рис. 33. Так называемая диаграмма Фейнмана, описывающая квантовое рассеяние двух электронов в терминах обмена фотоном. Фейнмановская формулировка квантовой механики в виде «суммирования по историям» требует, чтобы при вычислении результирующего угла рассеяния электронов были рассмотрены все возможные обмены, в том числе и те, в которых участвует более одного фотона.
Исчерпываются ли этим сведения о Стандартной модели? Не совсем! В ней есть еще одна, последняя частица, знаменитый неуловимый бозон Хиггса, названный в честь британского физика-теоретика Питера Хиггса, который постулировал его существование в 1964 году. Бозон Хиггса – подобный частице квант поля Хиггса, невидимого скалярного поля, которое, совсем как инфлатонное поле в ранней Вселенной, равномерно пронизывает все пространство – этакая современная версия эфира. Поле Хиггса – ключевой элемент Стандартной модели, который дает всем другим элементарным частицам их массы. Электроны, кварки и даже обменные частицы в рамках Стандартной модели не имеют внутренне присущей им массы, но приобретают массу вследствие сопротивления, которое они испытывают, когда движутся сквозь вездесущее поле Хиггса. Частицы как будто постоянно бредут в грязи; вязкость этой грязи и есть то, что мы называем массой. Количество массы, которым в результате обладают различные частицы, зависит от того, насколько сильно они «чувствуют» поле Хиггса. Кварки и обменные частицы ядерных сил взаимодействуют с полем Хиггса очень сильно и имеют большую массу; более легкие электроны взаимодействуют с этим полем гораздо слабее, а фотоны, вообще с ним не взаимодействующие, остаются безмассовыми.