Читаем Об идолах и идеалах полностью

Философско-логический анализ старой методики обучения первоклассников, которая вводила их в царство математических понятий, бесспорно подтверждает высказанное положение. В этом случае ребенку внушали просто неверное (с точки зрения самой математики) представление о числе.

Как сплошь и рядом до самого последнего[194] времени задавалось ребенку «понятие» числа – фундаментального и самого общего основания всех его дальнейших шагов в области математического мышления?

Сначала очень натурально и наглядно рисовали мячик, рядом с ним – девочку, яблоко (или вишенку), жирную палочку (или точку), и, наконец, цифровой знак единицы.

Затем – две куклы, два мальчика, два арбуза, две точки и цифра 2. И так далее, вплоть до десяти, до предела, назначенного дидактикой для первоклассника сообразно с его возрастными («природными») возможностями...

Предполагалось, что, усвоив все это, ребенок усвоит счет, а вместе с ним «понятие» числа.

Умение считать он, действительно, таким образом усваивал. Но вот что касается «понятия» числа, то вместо него ребенок незаметно для себя проглатывал совершенно абстрактное представление о числе, такое представление, которое даже хуже тех обывательских, донаучных представлений, с которыми он приходит в школу.

Если бы первоклассник обладал достаточными аналитическими способностями, то на вопрос: «Что такое число?» он ответил бы примерно следующее. Число есть название, выражающее то абстрактно-общее, что имеют между собой все единичные вещи. Исходная цифра натурального ряда – название единичной вещи, двойка – двух единичных вещей и т.д. Единичная же вещь – это то, что я вижу в пространстве как резко и отчетливо отграниченное, «вырезанное» контуром из всего остального, окружающего ее, мира, – будь то контур мячика или шагающего экскаватора, девочки или тарелки с супом. Недаром, чтобы проверить, усвоил ли ребенок[195] школьную премудрость, ему показывали предмет (безразлично какой) и спрашивали: «Сколько?», желая услышать в ответ – один (одна, одно)». А далее – два, три и т.д.

Но ведь любой мало-мальски грамотный в математике человек рассмеется, услышав такое объяснение числа, по праву расценит его как детски наивное и неверное. А как же иначе, если частный случай числового выражения действительности ребенок вынужден усваивать как самый общий, как представление о числе вообще.

В итоге же получалось, что уже ближайшие шаги в сфере математического мышления, которые он неуверенно делает под присмотром учителя, заводят его в тупик и сбивают с толку. Скоро обнаруживалось, что единичный предмет, который ему показывают, вовсе не обязательно называется словечком один, а может быть и два (две половинки), и три, и восемь, и вообще сколько угодно и что число 1 есть все что угодно, но только не название единичной, чувственно воспринимаемой «вещи». А чего же? Какую реальность обозначают числовые знаки?

Теперь бессильным окажется даже ребенок, обладающий самыми тонкими и гениальными аналитическими способностями... И потому только, что в его голове отложились два взаимоисключающих представления о числе, которые он никак не соотносит, не «опосредствует». Они просто находятся рядом, как два стереотипа, что очень легко выявить; столкнув их в «сшибке», в открытом противоречии.

Покажите ребенку игрушечный поезд, сцепленный из трех вагонов и паровозика, и спросите: сколько? Один (поезд)? Четыре (составных части поезда)? Три и один (паровоз и вагоны)? Шестнадцать (колес)? Шестьсот пятьдесят четыре (грамма)? Три[196] пятьдесят (цена игрушки в магазине)? Одна вторая (комплекта)?

Здесь обнаруживается все коварство абстрактного вопроса «сколько?», на который ранее приучили давать бездумно абстрактный ответ, не уточняя – «чего?»... И даже отучали от желания уточнить, если оно было у ребенка, как от желания, которое надо оставить перед входом в храм математического мышления, где – в отличие от мира его непосредственного опыта – и вкусная конфета и отвратительная ложка касторки значат «одно и то же» – а именно: одно, единицу...

Такая абстракция, на которую ребенка «натаскивали» с первых шагов обучения счету, приучая начисто отвлекаться от всякой качественной определенности «единичных вещей», приучая к мысли, что на уроках математики качество вообще нужно забыть во имя чистого количества, во имя числа, – для понимания ребенка непосильна. Он ее может только принять на веру; так, мол, уж принято в математике, в противоположность реальной жизни, где конфету от касторки он все же продолжает различать...

Предположим, что ребенок твердо усвоил вышеразъясненное представление о числе и счете, и что три арбуза – «одно и то же», что и три пары ботинок, «три» без дальнейших разъяснении. Но тут ему сообщают новую тайну: три аршина нельзя складывать с тремя пудами; это – «не одно и то же»; и что прежде, чем складывать, располагать в один счетный ряд, надо предварительно убедиться, что имеешь дело с одноименными (однокачественными) вещами;

Перейти на страницу:

Похожие книги

Этика. О Боге, человеке и его счастье
Этика. О Боге, человеке и его счастье

Нидерландский философ-рационалист, один из главных представителей философии Нового времени, Бенедикт Спиноза (Барух д'Эспиноза) родился в Амстердаме в 1632 году в состоятельной семье испанских евреев, бежавших сюда от преследований инквизиции. Оперируя так называемым геометрическим методом, философ рассматривал мироздание как стройную математическую систему и в своих рассуждениях сумел примирить и сблизить средневековый теократический мир незыблемых истин и науку Нового времени, постановившую, что лишь неустанной работой разума под силу приблизиться к постижению истины.За «еретические» идеи Спиноза в конце концов был исключен из еврейской общины, где получил образование, и в дальнейшем, хотя его труды и снискали уважение в кругу самых просвещенных людей его времени, философ не имел склонности пользоваться благами щедрого покровительства. Единственным сочинением, опубликованным при жизни Спинозы с указанием его имени, стали «Основы философии Декарта, доказанные геометрическим способом» с «Приложением, содержащим метафизические мысли». Главный же шедевр, подытоживший труд всей жизни Спинозы, – «Этика», над которой он работал примерно с 1661 года и где система его рассуждений предстает во всей своей великолепной стройности, – вышел в свет лишь в 1677 году, после смерти автора.В формате PDF A4 сохранен издательский макет книги.

Бенедикт Барух Спиноза

Философия
Философия
Философия

Учебник подготовлен коллективом известных российских ученых преподавателей Российского государственного гуманитарного университета и ряда других ведущих вузов, сотрудников научных учреждений Российской Академии наук.Учебник содержит изложение истории философии и рассмотрение ее основных областей. При этом многие вопросы, входящие в вузовский курс философии, освещены достаточно подробно, что позволит студентам и преподавателям специализированных вузов углубленно изучить философские проблемы применительно к своей специальности.Второе издание переработано и дополнено рядом новых глав. Рекомендуется как для студентов, начинающих изучать вузовский курс философии, так и для аспирантов, преподавателей; всех интересующихся современным уровнем рассмотрения проблем истории философии и ее теоретических областей.

Александр Феодосиевич Грязнов , Алексей Владимирович Пименов , Альберт Иванович Алёшин , Камалудин Серажудинович Гаджиев , Светлана Сергеевна Неретина

Философия