Читаем Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта полностью

MDAI – это прямой наследник символьного AI (symbolic AI), строившегося исходя из так и не доказанной гипотезы о возможности создания программной модели искусственного мозга. Для организации процесса передачи знаний в модели использовались самые разные приемы, но все они страдают общими непреодолимыми недостатками – они чрезвычайно трудоемки в процессе создания и поддержки, зависят от человеческих ошибок (prone to human error), а в ряде случаев сложность такова, что человек попросту оказывается не в состоянии создать необходимую модель знаний. Например, если средствами MDAI решать задача распознавания, то следует сделать полную декомпозицию опознаваемого предмета, выделить все возможные признаки и разработать правила сравнения данных, заложенных в модель с распознаваемым изображением. В экспериментах по распознаванию геометрических фигур такой подход был возможен, но для предметов из реального мира требуемое количество признаков и признаков и слишком велико. Поэтому MDAI неприменим к популярным сейчас компьютерному зрению и к работе с текстами на естественном языке.

Однако модели были и остаются важным инструментом исследования, самых разных научных и технических областях создатели моделей стремятся приблизить их как можно ближе к природе, к реальной жизни, но при этом осознанно принимают во внимание их ограничения. На модели, например, можно оценить аэродинамику, но не все особенности поведения летательного аппарата в воздухе. Возможности моделей ограничены, показателен следующий афоризм британского статистика Джорджа Бокса (George Box, 1919–2013): «В сущности, все модели неправильны, но некоторые полезны».

Своим высказыванием Бокс открыл многолетнюю дискуссию о значении моделей, которую статистики ведут более 40 лет. Если существует сомнение в справедливости статистических моделей, имеющих под собой серьезную математическую основу, то что говорить об эмпирических моделях мозга? Нет ничего удивительного в том, что MDAI на данный момент никаких практических перспектив на будущее не имеет. Но ни от чего нельзя зарекаться, не исключено, что в будущем станет возможен компромисс между MDAI и DDAI, но для этого нужны методы, обеспечивающие автоматизацию при создании моделей.

Подход DDAI – продолжение коннекционизма, он назван так, потому что в данном случае AI строится на скрытых знаниях (tacit knowledge), самостоятельно излеченных машиной из предъявляемых ей данных в процессе обучения AI, такой процесс можно назвать автоматизированной излечения информации или знаний. Как любая автоматизация, DDAI гарантирует независимость от человеческих ошибок. DDAI того, что реально делается в AI-индустрии, «AI, который работает» (AI that works). Причина доминирующего положения DDAI имеет вполне очевидные объяснения – это доступное по цене и обладающее высокими показателями аппаратное обеспечение (серверы, процессоры и системы хранения) и успехи в программном обеспечении, реализующем машинное обучения (ML), и искусственные нейронные сети (ANN). Лет 10 назад настал момент, когда сложились условия для воплощения DDAI и после этого «процесс пошел». Ускоренное развитие методов DDAI стало стимулом к созданию новых программных и аппаратных технологий и далее, буквально на глазах складывается система с положительной обратной связью, где новые компьютерные технологии открывают более широкие перспективы для AI, а развитие AI стимулирует развитие технологий. Синергия AI и технологий позволяет качественно расширить сферу автоматизации. В отчете McKinsey «Четыре столпа автоматизации рабочих мест» (Four fundamentals of workplace automation) показано, что существовавшие до сих пор традиционные технологии позволяют автоматизировать не более 5 % рабочих мест, а с использованием методов DDAI количество автоматизируемых рабочих мест возрастет до 60 %, а уровень автоматизации составит порядка 30 %.

Для создания обложки использованы материалы Wikipedia

https://ru.wikipedia.org/wiki/%D0%9F%D0%B8%D1%82%D1%82%D1%81,_%D0%A3%D0%BE%D0%BB%D1%82%D0%B5%D1%80#/media/%D0%A4%D0%B0%D0%B9%D0%BB: Lettvin_Pitts.jpg

https://en.wikipedia.org/wiki/Marvin_Minsky#/media/File: Marvin_Minsky_at_OLPCb.jpg

https://en.wikipedia.org/wiki/Frank_Rosenblatt#/media/File: Rosenblatt_21.jpg

https://en.wikipedia.org/wiki/Ramon_Llull#/media/File: Ramon_Llull.jpg

Перейти на страницу:

Похожие книги

Чем женщина отличается от человека
Чем женщина отличается от человека

Я – враг народа.Не всего, правда, а примерно половины. Точнее, 53-х процентов – столько в народе женщин.О том, что я враг женского народа, я узнал совершенно случайно – наткнулся в интернете на статью одной возмущенной феминистки. Эта дама (кандидат филологических наук, между прочим) написала большой трактат об ужасном вербальном угнетении нами, проклятыми мужчинами, их – нежных, хрупких теток. Мы угнетаем их, помимо всего прочего, еще и посредством средств массовой информации…«Никонов говорит с женщинами языком вражды. Разжигает… Является типичным примером… Обзывается… Надсмехается… Демонизирует женщин… Обвиняет феминизм в том, что тот "покушается на почти подсознательную протипическую систему ценностей…"»Да, вот такой я страшный! Вот такой я ужасный враг феминизма на Земле!

Александр Петрович Никонов

Публицистика / Прочая научная литература / Образование и наука / Документальное
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука
Что день грядущий нам готовил?
Что день грядущий нам готовил?

Книга Пола Майло впервые рассказывает о том, что было «видно» в нашем 21 веке из века 20-го. Это поразительная коллекция предсказаний, сделанных учеными, экспертами и публицистами 20 века, — предсказаний удачных (их не очень много), скандальных (умеренно много), смешных (весьма много) и… неудачных (подавляющее большинство). Но главное — как обнаружил автор, «предсказания позволяют оценить не только и не столько даже будущее, сколько настоящее».Пол Майло — американский журналист, лауреат нескольких профессиональных премий. Сотрудничал с «Уолл-стрит джорнал», «Бостон глоуб» и многими другими крупными изданиями. «Что день грядущий нам готовил?» — его первая книга.

Пол Майло

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Научпоп / Образование и наука / Документальное