Читаем Об интеллекте полностью

Например, мы могли бы разработать сенсорную систему, которая охватывает весь земной шар. Вообразите метеорологические датчики, расположенные примерно через каждые пятьдесят миль по континенту. Эти сенсоры были бы аналогичны сенсорам сетчатки. В любой момент времени, два смежных сенсора погоды имели бы высокую корреляцию их активности, подобно двум смежным нейронам сетчатки. Есть большие метеорологические объекты, такие как шторма и фронты, которые движутся и изменяются во времени, точно также как движутся и изменяются во времени визуальные объекты. Приделывая такой сенсорный массив к большой кортикальноподобной памяти, мы могли бы позволить системе научиться предсказывать погоду, точно так же, как мы учимся узнавать визуальные объекты и предсказывать, как они движутся во времени. Система видела бы локальные погодные паттерны, существующие часы, дни, годы. Размещая сенсоры поближе в некоторых регионах, мы могли бы создать некоторое подобие фовеа, позволяя интеллектуальному погодному мозгу понимать и предсказывать микроклимат. Наш погодный мозг понимал бы и думал бы о глобальной погодной системе так же, как я и вы понимаем и думаем об объектах и людях. Метеорологи сегодня занимаются чем то похожим. Они собирают записи с различных распределенных датчиков и используют суперкомпьютеры для моделирования климата и прогноза погоды. Но этот подход, который фундаментально отличается от того, как работали бы интеллектуальные машины, сродни тому как компьютер играет в шахматы — тупо и без понимания — тогда как интеллектуальная погодная машина сродни человеку, играющему в шахматы — вдумчиво и с пониманием. Интеллектуальная погодная машина открыла бы паттерны, которые недоступны человеку. Только в 1960 году был открыт погодный феномен, известный как El Niсo. Погодный мозг мог бы найти гораздо больше паттернов, подобных El Niсo, или обучиться тому, как предсказывать торнадо или муссоны гораздо лучше, чем человек. Располагая огромное количество погодных данных в форме, которая недоступна для понимания человеком, наш погодный мозг ощущал бы и думал о погоде непосредственно.

Другая сильно распределенная система сенсоров могла бы позволить нам построить интеллектуальную машину, понимающую и предсказывающую миграцию животных, демографические изменения, распространение болезней. Вообразите, что у нас есть сенсоры, распределенные по сетям линий электропередачи. Интеллектуальная машина, присоединенная к этим сенсорам наблюдала бы спады и потоки электропотребления таким же образом, как мы видим потоки дорожного движения, или движение людей в аэропорту. Через постоянное наблюдение этого человек обучается предсказывать эти паттерны — просто спросите об этом служащих, ездящих на транспорте или службу безопасности аэропорта. Аналогично интеллектуальный монитор сети электропередачи был бы способен лучше чем человек предсказывать потребности в электроэнергии, предсказывать ситуации, ведущие к перегрузке. Мы могли бы комбинировать сенсоры для погоды и человеческой демографии для того, чтобы предвидеть политические волнения, стихийные бедствия или вспышки болезней. Подобно очень умному дипломату, интеллектуальные машины могли бы играть роль в сокращении конфликтов и человеческих страданий. Вы могли бы подумать, что интеллектуальной машине нужны были бы эмоции, чтобы предсказывать паттерны, связанные с человеческим поведением, но я так не думаю. Мы не родились с набором культурных, религиозных ценностей; мы обучились им. И точно также, как я могу научиться понимать мотивацию людей с ценностями, отличными от моих, интеллектуальная машина могла бы постичь человеческие мотивации и эмоции, даже если сама по себе машина не имеет эмоций.

Мы могли бы изучать структуру бытия. Теоретически возможно сделать сенсоры, которые могли бы представлять паттерны в клетках или больших молекулах. Например, важная проблема сегодня — это понять, как форма молекулы белка может быть предсказана из последовательности аминокислот, составляющих этот белок. Умея предсказывать процесс свертывания и взаимодействия белков ускорило бы развитие медицины и вылечило бы многие болезни. Инженеры и ученые создают трехмерные визуальные модели белков, пытаясь предсказать, как поведут себя эти сложные молекулы. Но это слишком сложно. С другой стороны, супер интеллектуальная машина с набором сенсоров, специально подобранных для этой задачи, могла бы ответить на такие вопросы. Если это кажется слишком неестественным, вспомните, что мы не удивились бы, если человек смог бы решить эту проблему. Наша неспособность ухватить всю суть может быть базируется, в основном, на несоответствии между человеческими органами чувств и физическим феноменом, который мы хотим понять. Интеллектуальные машины могли бы иметь различные органы чувств и память, больше чем у человека, позволяющие им решать те проблемы, которые мы не можем решить.

Перейти на страницу:

Похожие книги

Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT
Основы информатики: Учебник для вузов
Основы информатики: Учебник для вузов

Учебник состоит из двух разделов: теоретического и практического. В теоретической части учебника изложены основы современной информатики как комплексной научно-технической дисциплины, включающей изучение структуры и общих свойств информации и информационных процессов, общих принципов построения вычислительных устройств, рассмотрены вопросы организации и функционирования информационно-вычислительных сетей, компьютерной безопасности, представлены ключевые понятия алгоритмизации и программирования, баз данных и СУБД. Для контроля полученных теоретических знаний предлагаются вопросы для самопроверки и тесты. Практическая часть освещает алгоритмы основных действий при работе с текстовым процессором Microsoft Word, табличным редактором Microsoft Excel, программой для создания презентаций Microsoft Power Point, программами-архиваторами и антивирусными программами. В качестве закрепления пройденного практического курса в конце каждого раздела предлагается выполнить самостоятельную работу.

Вадим Васильевич Лысенко , Лариса Александровна Малинина , Максим Анатольевич Беляев

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Киберкрепость: всестороннее руководство по компьютерной безопасности
Киберкрепость: всестороннее руководство по компьютерной безопасности

Как обеспечить надежную защиту в эпоху, когда кибератаки становятся все более продвинутыми? Каковы последствия уязвимости цифровых систем? Петр Левашов, экс-хакер с богатым бэкграундом, рассматривает все грани кибербезопасности, начиная с базовых принципов и заканчивая новейшими технологиями.Читатели познакомятся с:• основами компьютерной безопасности и актуальными методами защиты;• современными методами шифрования данных и криптографии;• процедурами ответа на инциденты и восстановления после катастроф;• юридическими и регуляторными требованиями к компьютерной безопасности.Автор использует свой уникальный опыт, чтобы предоставить читателям углубленное понимание кибербезопасности. Его подход охватывает теоретические знания и практическую подготовку, делая этот материал доступным для профессионалов и новичков.

Пётр Юрьевич Левашов

Зарубежная компьютерная, околокомпьютерная литература