Читаем Об интеллекте полностью

Интеллектуальным машинам нет необходимости проходить этот длинный путь обучения, поскольку чипы и другие устройства хранения могут быть скопированы многократно и содержимое может быть легко перенесено. В этом смысле интеллектуальные машины могли бы копироваться как программное обеспечение. Как только единичный прототип системы был удовлетворительно настроен и натренирован, он мог бы быть скопирован многократно по нашему желанию. Могут уйти годы на разработку чипа, конфигурирование аппаратуры, тренировки, пробы и ошибки при совершенствовании системы памяти для умного автомобиля, но как только получен конечный продукт, можно начать его массовое производство. Как я уже упоминал ранее, мы могли бы выбрать, позволить копиям продолжать обучение или нет. Для некоторых приложений мы хотели бы ограничить интеллектуальные машины, чтоб они работали только протестированным и известным образом. Как только умная машина узнает все, что необходимо, мы не хотели бы, чтоб у нее развились вредные привычки или чтоб она поверила в ложные аналогии, которые ей показались бы. Мы ожидали бы, что все одинаковые машины вели бы себя одинаково. Но для других приложений, мы хотели бы, чтоб мозгоподобная система памяти сохраняла способность продолжать обучение. Например, интеллектуальная машина, разработанная для поиска математических доказательств, нуждалась бы в способности обучаться на опыте, применять старые догадки к новым проблемам, и была бы обобщенно гибкой и открытой.

Была бы необходима возможность совместного использования компонентов обучения, так же как это делается для программного обеспечения. Интеллектуальная машина конкретной разработки могла бы быть перепрограммирована с новым множеством соединений, ведущих к отличному поведению, как если бы я мог загрузить новый набор соединений в ваш мозг и изменить вас с англо-говорящего на франко-говорящего, или с профессора политических наук на музыковеда. Люди могли бы обменивать и строить работу других. Скажем, я разработал и натренировал машину с превосходной визуальной системой, а другой человек разработал и натренировал машину с превосходным слухом. При правильной разработке мы могли бы скомбинировать преимущества обеих систем без тренировки снизу вверх. Совместное использование жизненного опыта таким способом просто невозможно для людей. Направление разработки интеллектуальных машин могло бы эволюционировать тем же путем, что и компьютерная индустрия, с сообществами людей, тренирующих интеллектуальные машины на специализированные знания и способности, и людей, продающих и обменивающих результаты конфигурации памяти. Перепрограммирование интеллектуальной машины не отличалось бы от запуска новой видеоигры или инсталлирования нового программного обеспечения.

Сенсорные системы.

У людей есть набор чувств. Эти чувства замурованы глубоко в наших генах, в наших телах и в субкортикальных соединениях нашего мозга. Мы не можем изменить их. Иногда мы используем технологию, чтобы усилить наши чувства, такие как очки ночного видения, радары или космический телескоп Хаббл. Эти высокотехнологические инструменты являются хитрыми трюками преобразования данных, но не новой моделью восприятия. Они преобразуют информацию, которую мы не можем ощущать, в визуальную или слуховую, которую уже мы можем интерпретировать. Тем не менее, необходимо отдать должное изумительной гибкости нашего мозга, которая проявляется в том, что мы можем смотреть на экран радара и понимать то, что он представляет. Большинство видов животных демонстрируют различные чувства, такие как эхолокация у летучих мышей и дельфинов, способность пчел видеть поляризованный и ультрафиолетовый свет, способность чувствовать электрическое поле у некоторых рыб.

Интеллектуальные машины могли бы воспринимать мир через любые органы чувств, как существующие в природе, так и чисто разработанные человеком. Сонар, радар и инфракрасное зрение очевидные примеры нечеловеческих видов органов чувств, которые мы могли бы захотеть использовать в интеллектуальных машинах. Но это только начало.

Гораздо более интересным был бы способ, которым интеллектуальные машины воспринимали бы мир экзотических, чуждых чувств. Как мы видели, неокортикальный алгоритм фундаментально занимается поиском паттернов в мире. Для него нет предпочтения к физическим источникам этих паттернов. Пока информация, поступающая в кортекс, является неслучайной и имеет определенную статистическую структуру, интеллектуальная система будет формировать инвариантные воспоминания и предсказания на их основе. Нет причины, по которой эти паттерны обязаны быть аналогичными чувствам животных, или даже вообще приходить из реального мира. Я ожидаю, что именно в области экзотических органов чувств лежит революционное использование интеллектуальных машин.

Перейти на страницу:

Похожие книги

Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT
Основы информатики: Учебник для вузов
Основы информатики: Учебник для вузов

Учебник состоит из двух разделов: теоретического и практического. В теоретической части учебника изложены основы современной информатики как комплексной научно-технической дисциплины, включающей изучение структуры и общих свойств информации и информационных процессов, общих принципов построения вычислительных устройств, рассмотрены вопросы организации и функционирования информационно-вычислительных сетей, компьютерной безопасности, представлены ключевые понятия алгоритмизации и программирования, баз данных и СУБД. Для контроля полученных теоретических знаний предлагаются вопросы для самопроверки и тесты. Практическая часть освещает алгоритмы основных действий при работе с текстовым процессором Microsoft Word, табличным редактором Microsoft Excel, программой для создания презентаций Microsoft Power Point, программами-архиваторами и антивирусными программами. В качестве закрепления пройденного практического курса в конце каждого раздела предлагается выполнить самостоятельную работу.

Вадим Васильевич Лысенко , Лариса Александровна Малинина , Максим Анатольевич Беляев

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Киберкрепость: всестороннее руководство по компьютерной безопасности
Киберкрепость: всестороннее руководство по компьютерной безопасности

Как обеспечить надежную защиту в эпоху, когда кибератаки становятся все более продвинутыми? Каковы последствия уязвимости цифровых систем? Петр Левашов, экс-хакер с богатым бэкграундом, рассматривает все грани кибербезопасности, начиная с базовых принципов и заканчивая новейшими технологиями.Читатели познакомятся с:• основами компьютерной безопасности и актуальными методами защиты;• современными методами шифрования данных и криптографии;• процедурами ответа на инциденты и восстановления после катастроф;• юридическими и регуляторными требованиями к компьютерной безопасности.Автор использует свой уникальный опыт, чтобы предоставить читателям углубленное понимание кибербезопасности. Его подход охватывает теоретические знания и практическую подготовку, делая этот материал доступным для профессионалов и новичков.

Пётр Юрьевич Левашов

Зарубежная компьютерная, околокомпьютерная литература