Теперь для сравнения рассмотрим доказательства. Каждому математику известно, что значительный интерес представляет доказательство теоремы при помощи минимального логического аппарата. Доказательство, использующее более сильные, чем необходимо, логические средства, математически неудовлетворительно, и всегда бывает интересно найти самые слабые исходные предположения и минимальные средства, использующиеся в доказательстве. Другими словами, мы хотим, чтобы доказательство было не только достаточным, то есть верным, но и, если возможно, необходимым, в том смысле, что в нем использовались бы минимальные исходные предположения. Я признаю, что это несколько изощренная точка зрения. В обычной математике — математике без затей — мы счастливы и довольны, если хоть что-то удается доказать, но в более изощренной математике нам хочется узнать, что же действительно необходимо для доказательства той или иной теоремы.
Так что, если удается доказывать математические теоремы более слабыми методами, чем полный арсенал классической логики, то это в высшей степени интересно с математической точки зрения. Таким образом, в теории доказательств мы заинтересованы в том, чтобы по возможности ослабить нашу классическую логику, и можем, например, ввести интуиционистскую логику или какую-то другую более слабую логику, такую как позитивная логика, и выяснить, как далеко мы можем продвинуться, не используя весь логический арсенал.
Мне кажется, кстати, что термин «интуиционистская логика» неудачен. Это просто название очень интересной и несколько ослабленной формы классической логики, которую придумал Брауэр и формализовал Гейтинг. Я, безусловно, не хочу ничего сказать в пользу философской теории, называемой интуиционизмом, хотя готов кое-что сказать в пользу логики Брауэра—Гейтинга. Надеюсь, никто не заподозрит меня в какой бы то ни было защите авторитета интуиции в философии, в логике или где-нибудь еще. Отвлекаясь на минуту от брауэровской логики, можно сказать, что интуиционизм — это доктрина о том, что интуиция не только важна, но и, вообще говоря, надежна. Я считаю, напротив, что интуиция очень важна, но, как правило, не выдерживает критики. Так что я не интуиционист. Как бы то ни было, брауэровская или так называемая «интуиционистская» логика очень важна с точки зрения теперешнего обсуждения, потому что она представляет собой просто часть классической логики, не совпадающую с нею и потому более слабую: каждый вывод, справедливый с точки зрения интуиционистской логики, будет также справедливым и с точки зрения классической логики, в то время как обратное неверно, поскольку имеются следствия, выводимые в классической логике, но невыводимые в интуиционистской логике. Таким образом, если я могу доказать теорему (пока что доказанную только классическими средствами) в интуиционистской логике, значит, я сделал настоящее математическое открытие. потому что математические открытия состоят не только в нахождении новых доказательств новых теорем, но и в нахождении новых доказательств старых теорем, а новое доказательство будет особенно интересно, если оно будет использовать более слабые средства, чем старое доказательство. Доказательство, использующее более сильные средства, всегда под рукой, a fortiori, а вот найти более слабое доказательство -— это настоящее математическое достижение.
Таким образом, интуиционистская логика представляет собой очень интересный подход к математике, потому что она пытается доказать как можно больше математических теорем урезанными логическими средствами.
У интуиционистской логики есть еще одно преимущество: можно показать, что так называемый «закон исключенного третьего» в ней недоказуем (хотя это правильно построенная формула этой системы). Можно также показать, что, если в какой-либо системе некоторая правильно построенная формула недоказуема, то эта система непротиворечива. Вообще говоря, чем слабее используемые нами логические средства, тем меньше нам грозит противоречивость, то есть возможность вывести противоречие. Так что интуиционистскую логику можно также рассматривать как попытку обеспечить непротиворечивость наших рассуждений и уменьшить риск столкновения со скрытыми противоречиями, парадоксами, антиномиями. Насколько надежна такая ослабленная логика как таковая, в этот вопрос я сейчас не хочу углубляться; но очевидно, она хотя бы немного надежнее, чем полная классическая логика. Я не предполагаю, что она всегда надежна, но речь не об этом. Я веду речь вот о чем. Если вы хотите доказать или установить что-либо, вам следует использовать слабые средства. Но для того, чтобы опровергнуть что-либо, — то есть для критики -— можно использовать сильные средства. Конечно, кто-то может сказать: «Послушайте, я могу опровергнуть вас и слабыми средствами; мне даже не понадобится вся интуиционистская логика целиком». Но это не так уж важно. Главное, что для рационалиста всякая критика хороша — хотя он может и ответить критикой на критику.