Читаем Объектно-ориентированный анализ и проектирование с примерами приложений на С++ полностью

Важнейшим преимуществом этого подхода является гарантия того, что состояние объекта, возбудившего исключение, не будет нарушено (не считая случая исчерпания оперативной памяти, когда уже в принципе ничего нельзя поделать). Любая функция, прежде чем произвести действия, способные изменить состояние объекта, проверяет предположение. В приведенной выше функции insert, например, прежде, чем добавить элемент в массив, мы сначала вызываем селектор (который не может вызвать изменения состояния объекта), затем проверяем все предусловия функции и лишь затем изменяем состояние объекта. Мы скрупулезно придерживались подобного стиля при реализации всех функций и настоятельно советуем не отходить от него при конструировании подклассов, основанных на нашей библиотеке.

Рис. 9-8 иллюстрирует схему взаимодействия классов, обеспечивающих реализацию механизма обработки исключений.  

Рис. 9-8. Классы обработки исключений.

Итерация

Итерация - это еще один архитектурный шаблон нашей библиотеки. В главе 3 уже отмечалось, что итератор представляет собой операцию, обеспечивающую последовательный доступ ко всем частям объекта. Оказывается, такой механизм нужен не только пользователям, он необходим и при реализации самой библиотеки, в частности, ее базовых классов.

При этом перед нами стоял выбор: можно было определять итерации как часть протокола объектов или создавать отдельные объекты, ответственные за итеративный опрос других структур. Мы выбрали второй подход по двум причинам:

• Наличие выделенного итератора классов позволяет одновременно проводить несколько просмотров одного и того же объекта.

• Наличие итерационного механизма в самом классе несколько нарушает его инкапсуляцию; выделение итератора в качестве отдельного механизма поведения способствует достижению большей ясности в описании класса.

Для каждой структуры определены две формы итераций. Активный итератор требует каждый раз от клиента явного обращения к себе для перехода к следующему элементу. Пассивный итератор применяет функцию, предоставляемую клиентом, и, таким образом, требует меньшего участия клиента. Чтобы обеспечить безопасность типов, для каждой структуры создаются свои итераторы.

Рассмотрим в качестве примера активный итератор для класса Queue:

template class QueueActiveIterator { public:

QueueActiveIterator(const Queue&); ~QueueActiveIterator();

Пассивный итератор реализует "применяемую" функцию. Эта идиома обычно используется в функциональных языках программирования.

void reset(); int next(); int isDone() const; const Item* currentItem() const;

protected:

const Queue& queue; int index;

};

Каждому итератору в момент создания ставится в соответствие определенный объект. Итерация начинается с "верха" структуры, что бы это ни значило для данной абстракции.

С помощью функции currentItem клиент может получить доступ к текущему элементу; значение возвращаемого указателя может быть нулевым в случае, если итерация завершена или если массив пуст. Переход к следующему элементу последовательности происходит после вызова функции next (которая возвращает 0, если дальнейшее движение невозможно, как правило, из-за того, что итерация завершена). Селектор isDone служит для получения информации о состоянии процесса: он возвращает 0, если итерация завершена или структура пуста. Функция reset позволяет осуществлять неограниченное количество итерационных проходов по объекту.

Например, при наличии следующего объявления:

BoundedQueue eventQueue;

фрагмент кода, использующий активный итератор для захода в каждый элемент очереди, будет выглядеть так:

QueueActiveIterator iter(eventQueue); while (!iter.isDone()) {

iter.currentItem()->dispatch(); iter.next();

}

Итерационная схема, приведенная на рис. 9-9, иллюстрирует данный сценарий работы и, кроме того, раскрывает некоторые детали реализации итератора. Рассмотрим их более подробно.

Конструктор класса QueueActiveIterator сначала устанавливает связь между итератором и конкретной очередью. Затем он вызывает защищенную функцию cardinality, которая определяет количество элементов в очереди. Таким образом, конструктор можно описать следующим образом:

template QueueActiveIterator::QueueActiveIterator(const Queue& q) :queue(q), index(q.cardinality() ? 0 : -1) {}

Класс QueueActiveIterator имеет доступ к защищенной функции cardinality класса Queue, поскольку числится в дружественных ему.

Перейти на страницу:

Похожие книги

Adobe Flash. Создание аркад, головоломок и других игр с помощью ActionScript
Adobe Flash. Создание аркад, головоломок и других игр с помощью ActionScript

Данная книга посвящена программированию игр с помощью ActionScript. Здесь вы найдете подробные указания, необходимые для создания самых разных игр – аркад, головоломок, загадок и даже игровых автоматов. В тексте приведены исходные коды программ и детальные, доступно изложенные инструкции. Базовые принципы программирования ActionScript рассматриваются на примере игр, однако вы без труда сможете применить полученные знания и для разработки неигровых проектов, таких как Web-дизайн и реклама. Рекомендации Гэри Розенцвейга помогут вам не только придумывать занимательные игры и размещать их на Web-сайте, но и оптимизировать скорость их работы, а также защищать свои творения от несанкционированного копирования. Представленный в книге код несложно изменить для использования в других программах.Книга предназначена для широкого круга читателей – создателей анимационных роликов, художников-оформителей, программистов и разработчиков Web-сайтов. Издание может также выступать в качестве практического пособия по изучению ActionScript.

Гэри Розенцвейг

Программирование, программы, базы данных / Программирование / Книги по IT