Несогласие с учением Ньютона проявилось в знаменитом обмене письмами, продолжавшемся в 1715 и 1716 гг., между Лейбницем и учеником Ньютона преподобным Сэмьюэлем Кларком, который перевел «Оптику» Ньютона на латынь. Больше всего они спорили о природе Бога: вмешивается ли Он в управление миром, как считал Ньютон, или с самого начала установил определенный порядок, который далее развивается сам?{277}
Это противостояние кажется мне слишком несерьезным. Даже если бы его предмет существовал на самом деле, ни Лейбниц, ни Кларк все равно не могли узнать точный ответ на этот вопрос.В конце концов мнение критиков перестало что-либо значить, поскольку последователи Ньютона добились успехов. Галлей свел воедино результаты наблюдений комет в 1531, 1607 и 1682 гг. в параметры одной почти параболической эллиптической орбиты, доказав, что это были регулярные появления одной и той же кометы. Используя теорию Ньютона, чтобы учесть гравитационные возмущения, связанные с воздействиями масс Юпитера и Сатурна, в ноябре 1758 г. французский математик Алекси Клеро и его соратники предсказали, что эта комета вернется в перигелий в середине апреля 1759 г. Комету заметили в Рождество 1758 г., через 15 лет после смерти Галлея, а перигелия она достигла 13 марта 1759 г. В середине XVIII в. теория Ньютона продвигалась Клеро и Эмили дю Шателе, которые перевели «Начала» на французский язык, а также благодаря протекции любовника дю Шателе Вольтера. Еще один француз Жан Д’Аламбер (1717–1783) в 1749 г. опубликовал первые правильные и точные расчеты прецессии равноденствий, основываясь на работах Ньютона. Было очевидно, что учение Ньютона торжествует во всех областях.
Это происходило не потому, что теория Ньютона удовлетворяла неким ранее существовавшим метафизическим критериям научной теории. Это было не так. Она не отвечала на вопрос о цели, который был краеугольным в физике Аристотеля. Но эта теория объясняла универсальные принципы, которые позволили успешно решить множество задач, которые ранее казались неразрешимыми. Таким образом, она обеспечила неоспоримый образец того, какой может и должна быть физическая теория.
Подобную роль сыграла в истории науки и теория естественного отбора Дарвина. Мы чувствуем глубокое удовлетворение, когда удается что-либо успешно объяснить, как удалось Ньютону объяснить законы движения планет Кеплера, а также многое другое. Сохраняются только те научные теории и методы, которые обеспечивают удовлетворение такого рода, независимо от того, соответствуют ли они какому-то ранее существующему образцу того, как должна делаться наука.
Отказ от теорий Ньютона последователей Декарта и Лейбница заставляет думать о морали в истории науки: опасно отвергать теорию, с помощью которой удалось добиться столь многих впечатляющих результатов, соответствующих наблюдениям, сколько сумел получить Ньютон. Успешные теории могут работать по причинам, которых не понимают сами их творцы, а потом всегда становятся основанием для новых теорий, но никогда не бывают просто ошибочны.
В XX в. не всегда следовали этой морали. В 1920-е гг. началось развитие квантовой механики, совершенно нового раздела в физической теории. На место расчета траекторий планет или частиц пришли расчеты эволюции волн вероятности, интенсивность которых в любом месте и времени говорит нам о возможности обнаружить определенную планету или частицу. Многие основатели квантовой механики, в том числе Макс Планк, Эрвин Шрёдингер, Луи де Бройль и Альберт Эйнштейн, настолько не могли примириться с необходимостью отбросить принципы детерминизма, что они больше не работали над теориями квантовой механики, а лишь указывали на недопустимые последствия этих теорий. Часть критики квантовой механики, высказанная Шрёдингером и Эйнштейном, была обоснована и волнует нас до сих пор, но к концу 1920-х гг. квантовая механика уже была столь успешна в изучении особенностей атомов, молекул и фотонов, что ее начали воспринимать серьезно. Отрицание теорий квантовой физики вышеупомянутыми учеными означало, что они не смогли принять участие в развитии физики твердого тела, атомных ядер и элементарных частиц в 1930-х и 1940-х гг.
Как и квантовая механика, ньютоновская теория Солнечной системы стала подобием того, что позже стало называться Стандартной моделью. Я ввел этот термин в 1971 г., чтобы описать существующую на то время теорию структуры и эволюции расширяющейся Вселенной, объяснив: