После изложения теорий движения и притяжения Ньютон в «Математических началах» переходит к разработке некоторых следствий, которые выходят далеко за рамки трех законов Кеплера. Например, в Предложении 14 он объясняет прецессию перигелия орбит планет (для Земли), измеренную аз-Заркали, хотя сам Ньютон не пытается провести количественные вычисления.
В Предложении 19 Ньютон замечает, что все планеты должны быть сплющены у полюсов, поскольку их вращение производит центробежную силу, которая сильнее всего у экватора и уменьшается к полюсам. Например, вращение Земли создает центростремительное ускорение, на экваторе равное 0,034 м/с за секунду. Сравним эту величину с ускорением свободного падения – 9,8 м/с за секунду: центробежная сила, создаваемая вращением Земли, намного слабее силы притяжения, но полностью пренебречь ею нельзя, а Земля действительно имеет почти шаровидную форму, но слегка сплющена у полюсов. Наблюдения в 1740-х гг. в конце концов доказали, что один и тот же маятник раскачивается на экваторе медленнее, чем на более высоких широтах, в точности, как и ожидалось, поскольку на экваторе маятник находится немного дальше от центра Земли, сплющенной у полюсов.
В Предложении 39 Ньютон доказывает, что воздействие силы тяготения на сплющенную у полюсов Землю вызывает прецессию ее оси вращения, ту самую «прецессию равноденствий», которую впервые заметил Гиппарх (у Ньютона был свой особый интерес к этой прецессии: соотнося ее значения с древними наблюдениями звезд, он пытался установить даты предполагаемых исторических событий, например, путешествия Ясона и аргонавтов){268}
. В первом издании «Математических начал» Ньютон приводит свои расчеты, которые показали, что доля Солнца в годичной прецессии составляет 6,82° дуги, а воздействие со стороны Луны больше в 6,3 раза, что дает общие точки равноденствия в 50" дуги за год, и это идеально согласуется с годовой прецессией в 50", измеренной к тому времени и близкой к современному значению в 50,375". Это был впечатляющий результат, но позднее Ньютон понял, что найденная им величина прецессии под влиянием Солнца, а значит, и ее вклад в общую прецессию был в 1,6 раза занижен. Во втором издании он скорректировал величину воздействия со стороны Солнца, а также соотношение вкладов Солнца и Луны в общий эффект прецессии, так что их сумма опять же оказалась близкой к 50" и осталась в согласии с наблюдательными данными{269}. Ньютон получил верное качественное объяснение прецессии равноденствий, и его расчет дал ему величину правильного порядка для этого явления, но чтобы добиться необходимого согласия с наблюдениями, ему пришлось прибегнуть ко многим ухищрениям.Это только один пример того, как Ньютон подгонял свои расчеты, чтобы получать результаты, хорошо согласующиеся с наблюдениями. Наряду с этим примером Р. Вестфол{270}
приводит другие, в том числе расчеты Ньютоном скорости звука и его сравнение центростремительного ускорения Луны с ускорением свободного падения у поверхности Земли. Возможно, Ньютон чувствовал, что его настоящие или воображаемые соперники никогда не будут удовлетворены никакими выводами, кроме тех, которые идеально совпадают с наблюдениями.В Предложении 24 Ньютон излагает свою теорию приливов. Грамм за граммом Луна притягивает океанские воды сильнее, чем твердую Землю, центр которой находится дальше. В то же время Луна притягивает твердую Землю сильнее, чем океанскую воду на противоположной Луне стороне Земли. Таким образом, в океане появляется приливный горб, образующий волну как со стороны, обращенной к Луне, так и с противоположной, где сила притяжения Луны вытягивает Землю из воды. Этим объясняется, почему в некоторых местах высокие приливы отделяются промежутком примерно в 12 часов, а не в 24. Но это явление слишком сложно для теории приливов, которую можно было доказать опытом во времена Ньютона. Он знал, что Солнце, как и Луна, играет роль в образовании приливов. Приливы с максимально высоким уровнем и отливы с минимальным уровнем, известные как сизигийные приливы, возникают в новолуние или полнолуние, то есть когда Солнце, Луна и Земля оказываются на одной линии, взаимно усиливая воздействие силы притяжения. Но самая большая сложность проистекает из того факта, что все гравитационные воздействия в океане тесно связаны с формой континентов и топографией океанского дна, которые Ньютон не мог принимать в расчет.