Рис. 13. Расположение Земли и внутренней планеты (Меркурия или Венеры) в момент наибольшего видимого удаления этой планеты от Солнца.
Орбиты планеты и Земли изображены в виде двух окружностей.Рассмотрим орбиту одной из внутренних планет, Меркурия или Венеры, приближенно полагая, что и орбита Земли, и орбита этой планеты – окружности, центр которых совпадает с Солнцем. В момент, который принято называть максимальной элонгацией, планета видна на небе на угловом расстоянии θ
Небольшие различия между значениями синуса θ
20. Суточный параллакс
Представим себе «новую звезду» или иной астрономический объект, который неподвижен относительно звезд или очень незначительно перемещается по отношению к ним в течение суток. Допустим, что он находится гораздо ближе к Земле, чем звезды. Далее можно либо принять точку зрения, что Земля делает один оборот вокруг своей оси с востока на запад, либо что звезды вместе с этим объектом вращаются вокруг неподвижной Земли раз в сутки с запада на восток. В любом случае, поскольку мы видим объект в слегка разных направлениях в различное время ночи, его видимая позиция на фоне звезд будет смещаться. Это явление называется суточным параллаксом объекта. Измерение суточного параллакса позволяет определить расстояние до объекта, а в случае, если он так мал, что его не удается измерить, определяется минимальное расстояние, ближе которого астрономический объект находиться не может.
Для расчета величины этого углового сдвига необходимо для фиксированной наблюдательной площадки на Земле определить видимое расположение объекта среди звезд два раза: первый раз – когда он лишь появляется над горизонтом и второй раз – когда он находится выше всего на небе. Для того чтобы показать примерный расчет, рассмотрим простейший в геометрическом отношении случай: обсерватория расположена на экваторе, и объект находится в одной плоскости с экватором Земли. Конечно, это было не так в том случае, когда Тихо Браге измерял параллакс сверхновой звезды, но так мы тоже можем получить величину того же порядка.
Луч зрения от наблюдателя, направленный в сторону объекта, проходит по касательной к поверхности Земли в тот момент, когда он восходит над горизонтом, поэтому угол между этим лучом и направлением от обсерватории в центр Земли – прямой. Отрезки, соединяющие наблюдателя, центр Земли и объект, таким образом, образуют прямоугольный треугольник (см. рис. 14). Синус угла θ в этом треугольнике равен отношению противолежащего катета, радиуса Земли
Рис. 14. Использование суточного параллакса для определения расстояния
d от Земли до астрономического объекта. Здесь показан вид в плане со стороны южного полюса Земли. Для простоты примера наблюдатель расположен на экваторе, а наблюдаемый объект находится в той же самой плоскости, что и экватор. Две прямые, пересекающиеся под углом θ, – это направления от наблюдателя к объекту в моменты его восхода над горизонтом и шесть часов спустя, во время его кульминации прямо в зените для наблюдателя.