Например, если мы предположим, что наблюдаемый объект находится от нас так же далеко, как Луна, то d
≈ 400 000 км, rз ≈ 6400 км, поэтому sin θ ≈ 6,4/400, и, таким образом, θ ≈ 0,9°, а полный суточный параллакс составляет 1,8°. При наблюдении объекта из иной произвольной точки на Земле, такой как остров Вен (например, сверхновой 1572 г.), ожидаемый суточный параллакс должен быть меньше, но все равно того же порядка величины – около 1°. Этого более чем достаточно, чтобы такой опытный астроном, как Браге, измерил бы его и без увеличительных инструментов. Однако Тихо Браге не удалось, наблюдая сверхновую, заметить наличие у нее какого-либо суточного параллакса, из чего он заключил, что звезда находится гораздо дальше Луны. Кроме того, надо отметить, что и параллакс самой Луны был измерен без труда, что стало способом измерения расстояния между Землей и Луной.21. Правило равных площадей и эквант
Согласно Первому закону Кеплера, все планеты, включая Землю, обращаются вокруг Солнца по эллиптическим орбитам, причем Солнце находится не в их центрах, а в некоторых смещенных от центра точках, расположенных на больших осях этих эллипсов – в одном из фокусов эллипса каждой из орбит (см. техническое замечание 18). Эксцентриситет эллипса e
определяется так, что расстояние от любого его фокуса до центра равно ea, где a – длина большой полуоси эллипса. Также, согласно Второму закону Кеплера, скорость каждой планеты при ее перемещении по орбите не постоянна, а изменяется таким образом, что отрезок (или радиус-вектор), проведенный к ней от Солнца, заметает равные по площади участки плоскости за одинаковые отрезки времени.Существует другой способ приближенно сформулировать тот же Второй закон, имеющий близкое отношение к старой идее экванта, которую использовал в своей астрономической системе Птолемей. Вместо того чтобы рассматривать отрезок, проведенный к планете от Солнца, рассмотрим отрезок к ней же из другой точки, а именно из пустого
фокуса ее эллиптической орбиты. Эксцентриситет e некоторых орбит планет довольно значителен, и им нельзя пренебрегать. Но его квадрат e² очень мал для любой планеты. Например, среди планет самый большой эксцентриситет у орбиты Меркурия, для него e = 0,206, а e² = 0,042; для Земли же e² = 0,00028. Поэтому при вычислении планетных движений достаточно аппроксимировать реальные их законы уравнениями, в которых присутствуют слагаемые, пропорциональные эксцентриситету e, или независимые от него слагаемые, и игнорировать такие их члены, которые пропорциональны квадрату эксцентриситета e² или его степеням высших порядков. В этом приближении Второй закон Кеплера эквивалентен утверждению, что отрезок, проводимый из пустого фокуса планетной орбиты к планете, заметает равные углы за равные промежутки времени. Иначе говоря, эта линия вращается с постоянной угловой скоростью.На конкретном примере покажем, что если – это скорость, с которой радиус-вектор от Солнца к планете заметает равные площади, а (фи с точкой) – скорость изменения угла между радиус-вектором от пустого фокуса к той же планете и большой осью ее орбиты, то верно равенство
где O
(e²) – обозначение всех членов, пропорциональных e² или степеням e еще более высоких порядков, а R – коэффициент, значение которого зависит от применяемых единиц измерения углов. Если мы меряем углы в градусах, то R = 360°/2π = 57,293…°, то есть угол размером в один радиан. Или мы можем измерять углы в радианах, и тогда R = 1. Второй закон Кеплера гласит, что за одинаковые промежутки времени площадь, заметаемая радиус-вектором планеты, одна и та же. Это значит, что – величина постоянная, а, следовательно, что постоянна и с точностью до слагаемых высшего порядка, пропорциональных e². Поэтому с достаточной точностью можно сказать, что за заданный промежуток времени угол, на который изменяется радиус-вектор планеты из пустого фокуса ее орбиты, всегда один и тот же.Что касается описанной Птолемеем теории, центр эпицикла каждой планеты обращается вокруг Земли по круговой орбите, деференту, но Земля находится не в центре деферента. Орбита является эксцентричной, то есть Земля находится в точке, отделенной от центра деферента небольшим расстоянием. Мало того, скорость, с которой центр эпицикла обращается вокруг Земли, не постоянна, и угловая скорость, с которой луч от Земли к этому центру поворачивается, тоже не постоянна. Чтобы детально учесть все особенности наблюдаемого движения планет, Птолемей изобрел понятие экванта. Это точка по другую сторону от центра деферента по отношению к Земле, которая находится на том же расстоянии от центра, что и Земля. Луч, проводимый к центру эпицикла от этого экванта (а не от Земли), и должен был описывать равные углы в одни и те же промежутки времени.