Новорожденный белок, только что синтезированный клеточной машинерией, выглядит как длинная цепочка аминокислот, соединенных между собой ковалентными связями между карбоксильной группой каждого юнита и аминогруппой следующего за ним, – примерно как люди, которые стоят длинной шеренгой и держатся за руки. У каждой аминокислоты, помимо аминогруппы и кислотной группы, есть боковая цепочка. Она может быть очень простой – один атом водорода или короткая углеводородная цепочка, – а может содержать другие функциональные группы, в том числе вторую аминовую или вторую карбоксильную. В природе существует 20 аминокислот, из которых строится все разнообразие белков, и большинство их есть в каждом белке. Белки отличаются друг от друга в том числе и относительным объемом аминокислот, но прежде всего – расположением звеньев в цепи, и последовательность эта совершенно уникальна для каждого белка. Она закодирована в ДНК и определяет трехмерную структуру белка, которая в свою очередь отвечает за его физиологические функции.
После синтеза цепочка сворачивается или складывается неким неповторимым образом, хотя на первый взгляд белок может показаться просто случайным образом запутанной веревочкой. Взаимодействия между функциональными группами складывают белок сначала по маленьким доменам, а затем все это организуется в окончательную трехмерную структуру. Самые распространенные домены – спирали и складчатые листы. Эти структурные элементы соединяются между собой более короткими и гибкими сегментами, а потом собираются в финальную форму белка. Домены сами по себе сравнительно малы и состоят обычно из 10–20 аминокислот.
Водородные связи играют важнейшую роль в стабилизации и спиралей, и складчатых листов, а также участвуют в соединении доменов друг с другом. Имеют значение также и другие связи – более сильные, между противоположными зарядами, и более слабые, гидрофобные. Поскольку белки обычно находятся в водной среде, самые лучшие структуры аминокислотных цепочек – те, в которых гидрофобные остатки спрятаны внутри молекулы, а заряженные или гидрофильные находятся на поверхности.
Определение трехмерной структуры белка – непростая задача даже сегодня, а для некоторых классов белков прямо-таки откровенно сложная. Ни в какой, даже самый мощный, микроскоп невозможно разглядеть форму молекулы белка. Первое, и самое главное ограничение, с которым приходится иметь дело, – длина волны света, с которым мы работаем. Видимый свет охватывает длину волн приблизительно от 400 до 800 нм (где нм – нанометр, одна миллионная миллиметра). Любой объект размером меньше 200 нанометров будет выглядеть размыто, и идентифицировать его никак не получится.
Типичный белок от маленького до среднего размера можно себе представить как шарик диаметром примерно 3 нм – это в сто раз меньше лимита, устанавливаемого светом. При помощи направленного пучка электронов можно продвинуться значительно дальше; электронные микроскопы уже подарили нам изображения крупных сегментов ДНК и даже отдельных белков, которые, правда, все равно выглядят как размытые точки. Разглядеть расположение атомов в них нет никакой возможности – для этого нужно еще более высокое разрешение. Один атом, условно упрощенный до шарика, имел бы диаметр 0,1–0,2 нм: именно такое разрешение понадобилось бы, чтобы разглядеть внутреннюю структуру белка. Но, вместо того чтобы наблюдать атомы напрямую, мы можем вычислить их позиции по дифракционной картине, которую дают рентгеновские лучи, взаимодействуя с кристаллом белка. Объяснить этот метод не так-то легко, да и на практике он не слишком прямолинеен.
Прежде всего нужно вырастить кристалл белка – эта задача подразумевает много попыток, ни одна из которых не гарантирует успеха. Далее: от кристалла нужно получить хорошую дифракционную картину, а затем еще и интерпретировать полученные данные в свете пространственной системы координат.
Разумеется, при этом приходится надеяться, что структура кристаллического белка повторяет его естественную укладку, когда он свободно плавает в растворе.
Это допущение кажется натянутым и не слишком реалистичным, но на самом деле оно совершенно разумно и может быть принято достаточно уверенно. Дело в том, что кристаллы белков сильно отличаются от тех, с которыми мы сталкиваемся в повседневной жизни – кварца, сахара или поваренной соли. Когда молекулы белка организуются в упорядоченную матрицу из строчек и столбиков, они берут с собой много воды и сохраняют таким образом прежнее окружение, которое было в растворе. Кристалл белка, в отличие от твердого кристалла сахара или кварца, очень хрупок и разбивается нередко даже при очень осторожном обращении.
Все утонченные технологии, помогающие завершить структуру белка, нас сейчас не интересуют, поэтому давайте сосредоточимся на результате процесса и на том, как он отражается на функциях белков.