Читаем Общая химия полностью

Отличие строения атома бериллия от строения атома магния и щелочноземельных элементов сказывается и на свойствах его соединений. Так, ^^^ — единственное в подгруппе основание, обладающее амфотерными свойствами (см. ниже). Кроме того, для щелочноземельных металлов и магния характерно образование ионных соединений, тогда как атомы бериллия обычно связаны с атомами других элементов скорее ковалентной связью, чем ионной.

По своим химическим свойствам бериллий в значительной степени сходен с алюминием, находящимся в третьем периоде и в третьей группе периодической системы, т. е. правее и ниже бериллия. Это явление, носящее название диагонального сходства, наблюдается не только у бериллия, но и у некоторых других элементов. Например, бор по многим химическим свойствам сходен с кремнием.

При образовании соединений типа ^^^ , например ^^^ , атомы бериллия переходят в возбужденное состояние:

При этом за счет распаривания электронов образуются две ковалентные связи и происходит ^^^ -гибридизация: валентные электроны образуют два равноценных ^^^ -гибридных облака, вытянутых в противоположных направлениях. Таким образом, молекулы ^^^ имеют линейное строение. Более подробно ^^^ -гибридизация орбиталей в атоме бериллия рассмотрена в § 43; см. также рис. 39 на стр. 130.

Общее число валентных электронов в молекулах, подобных ^^^ , недостаточно для того, чтобы целиком заполнить внешний электронный слой атома бериллия. Поэтому такие молекулы называют электронодефицитными. Так, в молекуле ^^^

в наружном слое атома бериллия находятся всего четыре электрона.

Поэтому атом бериллия способен быть акцептором электронных пар и образовывать еще две ковалентные связи по донорно-акцепторному способу. В то же время каждый атом хлора, входящий в состав молекулы ^^^ , обладает неподеленными электронными парами и может выступать в качестве их донора. Поэтому при охлаждении газообразного хлорида бериллия между отдельными молекулами ^^^ возникают новые ковалентные связи в соответствии со схемой:

В итоге, при конденсации хлорида бериллия образуются линейные полимерные цепи, в которых атомы хлора играют роль мостиков, связывающих атомы бериллия. Атомы, выполняющие такую функцию, называются мостиков ^^^ атомами. Схема строения линейного полимера ^^^ изображена на рис. 163. Видно, что ковалентность и координационное число бериллия в твердом ^^^ равны четырем.

Это значение ковалентности и координационного числа характерно для многих устойчивых соединений бериллия. Так, при взаимодействии ^^^ с фторидами щелочных металлов образуются комплексные фторобериллаты, содержащие ^^^ , например:

Здесь атом бериллия находится в состоянии ^^^ , благодаря чему ион ^^^ построен в форме тетраэдра. Тетраэдрическое расположение атомов бериллия и кислорода характерно и для кристаллического оксида бериллия. В водных растворах ион бериллия, по-видимому, находится также в виде тетраэдрических аквакомплексов ^^^ .

Оксид бериллия ^^^ — белое, очень тугоплавкое вещество. Применяется в качестве химически устойчивого огнеупорного материала (в реактивных двигателях, для изготовления тиглей, в электротехнике) и как конструкционный материал в ядерных реакторах.

Гидроксид бериллия ^^^ имеет ясно выраженный амфотерный характер, чем резко отличается от гидроксидов щелочноземельных металлов.

Рис. 163. Схема строения линейного полимера ^^^ : черные кружки - атомы алюминия, светлые — атомы хлора.

- 592 -

В воде он практически нерастворим, но легко растворяется как в кислотах, так и в щелочах, в последнем случае с образованием гидроксоберпллатов:

Кислотные свойства гидроксида бериллия выражены очень слабо, поэтому в водном растворе бериллаты сильно гидролизуются.

Большинство солей бериллия, в том числе и сульфат, хорошо растворимы в воде, тогда как сульфаты щелочноземельных металлов в воде практически нерастворимы. В водных растворах ионы ^^^ подвергаются гидролизу, благодаря чему растворы солей бериллия имеют кислую реакцию.

Все соединения бериллия токсичны. В частности, весьма опасно пребывание в атмосфере, содержащей пыль бериллия или его соединений.

<p>210. Магний (Magnesium).</p>

Магний весьма распространен в природе. В больших количествах он встречается в виде карбоната магния, образуя минералы магнезит ^^^ и доломит ^^^ . Сульфат и хлорид магния входят в состав калийных минералов — каинита ^^^ и карналлита ^^^ содержится в морской воде, сообщая ей горький вкус. Общее количество магния в земной коре составляет около ^^^ .

Магний получают главным образом электролитическим методом. Электролизу подвергают расплавы хлорида магния или обезвоженного карналлита.

Магний — серебристо-белый, очень легкий металл. На воздухе он мало изменяется, так как быстро покрывается тонким слоем оксида, защищающим его от дальнейшего окисления.

Перейти на страницу:

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука