Каждое из этих равновесий характеризуется своей ступенчатой константой нестойкости ^^^ и т. д. По мере отщепления хлорид-ионов заряд комплекса становится все более положительным, а число ионов ^^^ в комплексе уменьшается. В результате последовательный отрыв хлорид-ионов все в большей степени затрудняется. Поэтому между ступенчатыми константами нестойкости иона ^^^ имеет место соотношение: ^^^ .
Такое изменение в значениях последовательных констант нестойкости носит общий характер ^^^ . Значение общей константы нестойкости равно произведению всех ступенчатых констант.
Значения констант нестойкости и устойчивости приводятся в справочниках по химии. С помощью этих величин можно предсказать течение реакций между комплексными соединениями: при сильном различии констант устойчивости реакция пойдет в сторону образования комплекса с большей константой устойчивости или, что равноценно, с меньшей константой нестойкости. Например, для иона ^^^ , а для иона ^^^ поэтому под действием кислот аммиакат серебра разрушается с образованием ионов ^^^ и ^^^ :
Комплекс же ^^^ не разрушается при комнатной температуре даже в концентрированной соляной кислоте.
Процессы комплексообразования широко используются в аналитической химии. При выборе условий наиболее эффективного разделения ионов исходят из соотношения констант устойчивости образуемых ими комплексных соединений.
Например, катионы ^^^ дают устойчивые растворимые аммиакаты, а ^^^ менее склонны к комплексообразованию с аммиаком и осаждаются при действии аммиака в виде гидроксидов. Это позволяет разделить действием аммиака эти две группы катионов. Подобного рода соображения могут быть использованы для разделения анионов: так, можно осадить смесь хлоридов и иодидов в виде ^^^ и ^^^ и далее обработать ее аммиаком — в раствор перейдет только ^^^ останется в осадке. Для того чтобы растворить ^^^ , нужно применить лиганд, связывающий ^^^ значительно прочнее, например ^^^ , так как для комплекса ^^^ . В растворе KCN иодид серебра растворяется с образованием ^^^ :
Константы устойчивости однотипных комплексов зависят от ряда факторов, и прежде всего от природы центрального атома и лигандов. В комплексах с центральными ионами, обладающими слабой поляризующей способностью, например с ионами щелочных и щелочноземельных металлов, устойчивость растет по мере увеличения интенсивности электростатического взаимодействия между центральным ионом и лигандами: чем больше заряды центрального иона и лигандов и чем меньше их радиусы, тем выше устойчивость комплексов. Эти катионы образуют более устойчивые комплексы с лигандами, содержащими элементы малых периодов (кислород, азот) и с ионами ^^^ .
Для другой большой группы комплексообразователей — катионов платиновых металлов, ионов ^^^ , у которых поляризующая способность выражена сильно и характер связи центрального атома с лигандами приближается к ковалентному, — наиболее устойчивы комплексы с легко поляризующимися лигандами. К последним относятся, например, ионы I- и лиганды, содержащие атомы Р и ^^^ .
208. Влияние координации на свойства лигандов и центрального атома.
Взаимное влияние лигандов. Координация сопряжена с изменением электронной конфигурации лнгандов и в результате приводит к изменению их свойств. Это хорошо видно на примере кислотноосновных свойств комплексных соединений. В то время как свободный аммиак обладает в водном растворе основными свойствами, комплекс ^^^ проявляет свойства кислоты и вступает в обратимую реакцию со щелочью:
Причина изменения свойств аммиака заключается в том, что при его координации происходит смещение электронной плотности к положительно заряженному центральному атому.
В результате эффективный отрицательный заряд атома азота в молекуле ^^^ резко снижается, что и облегчает отщепление протона.
Аналогично ведут себя в поле катионов некоторых переходных металлов и другие полярные или легко поляризующиеся молекулы, способные проявлять протонодонорные свойства — ^^^ , органические амины. Выступая в качестве лигандов, они способны к отщеплению протона в водных растворах и с точки зрения протонной теории кислот и оснований (стр. 237) ведут себя как кислоты. Например, взаимодействие гидратированного иона меди с водой следует записать так:
Это уравнение выражает процесс гидролиза иона меди. Таким образом, гидролиз катионов в водных растворах можно рассматривать как кислотную диссоциацию воды в аквакомилексах.
Если в комплексном соединении одновременно содержатся протонодонорная молекула лиганда (например, ^^^ , ^^^ ) и молекула того же лиганда, отщепившая протон и способная, следовательно, к его присоединению (например, ^^^ ), то такое комплексное соединение будет амфотерным. Так, комплекс ^^^ в реакции со щелочью ведет себя как кислота, а в реакции с кислотой — как основание:
Соединение, содержащее только депротонированные ионы ^^^ и ^^^ , является уже только основанием.