Почти все элементы главных подгрупп IV—VII групп периодической системы представляют собой неметаллы, в то время как элементы побочных подгрупп — металлы. Поэтому в правой части периодической системы различия в свойствах элементов главных и подобных подгрупп проявляются особенно резко. Однако в тех случаях, когда элементы главной и побочной подгруппы находятся в высшей степени окисленности, их аналогичные соединения проявляют существенное сходство. Так, хром, расположенный в побочной подгруппе VI группы, образует кислотный оксид ^^^ , близкий по свойствам к триоксиду серы ^^^ . Оба эти вещества в обычных условиях находятся в твердом состоянии и образуют при взаимодействии с водой кислоты состава ^^^ . Точно так же оксиды марганца и хлора, соответствующие высшей степени окисленности этих элементов, — ^^^ и ^^^ обладают сходными свойствами и представляют собой ангидриды сильных кислот, отвечающих общей формуле ^^^ .
Подобная близость свойств объясняется тем, что в высшей степени окисленности атомы элементов главных и побочных подгрупп приобретают сходное электронное строение. Например, атом хрома имеет электронную структуру ^^^ . Когда хром находится в степени окисленности ^^^ (например, в оксиде ^^^ ), шесть электронов его атома (пять ^^^ и один ^^^ -электрон) вместе с валентными электронами соседних атомов (в случае ^^^ — атомов кислорода) - образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию ^^^ , отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисленности ^^^ (например, в триоксиде серы ^^^ ), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных ^^^ также соответствует электронной структуре благородного газа.
Мы знаем, что в пределах одного периода у элементов главных подгрупп, т. е. у s- и ^^^ -элементов, с возрастанием их порядкового номера число электронов во внешнем электронном слое атомов возрастает, что приводит к довольно быстрому переходу от типичных металлов к типичным неметаллам. У переходных элементов возрастание порядкового номера не сопровождается существенным изменением структуры внешнего электронного слоя, поэтому химические свойства этих элементов изменяются в периоде хотя и закономерно, но гораздо менее резко, чем у элементов главных подгрупп.
В пределах одной декады переходных элементов (например, от скандия до цинка) максимальная устойчивая степень окисленности элементов сначала возрастает (благодаря увеличению числа ^^^ -электронов, способных участвовать в образовании химических связей), а затем убывает (вследствие усиления взаимодействия ^^^ -электронов с ядром по мере увеличения его заряда). Так, максимальная степень окисленности скандия, титана, ванадия, хрома и марганца совпадает с номером группы, тогда как для железа она равна шести, для кобальта, никеля и меди —трем, а для цинка — двум. В соответствии с этим изменяется и устойчивость соединений, отвечающих определенной степени окисленности элемента. Например, оксиды ^^^ и ^^^ , содержащие титан и ванадий в степени окисленности ^^^ , — сильные восстановители, а аналогичные оксиды меди и цинка ^^^ и ^^^ восстановительных свойств не проявляют.
В главных подгруппах устойчивость соединений, в которых элемент проявляет высшую степень окисленности, с увеличением порядкового номера элемента, как правило, уменьшается. Так, соединения, в которых степень окисленности углерода или кремния равна ^^^ , вполне устойчивы, тогда как аналогичные соединения свинца (например, ^^^ ) мало устойчивы и легко восстанавливаются. В побочных подгруппах проявляется обратная закономерность: с возрастанием порядкового номера элемента устойчивость высших окислительных состояний повышается. Так, соединения хрома ( ^^^ -сильные окислители, а для соединений молибдена (VI) и ^^^ окислительные свойства не характерны.
В пределах каждой побочной подгруппы отмечается значительное сходство в свойствах элементов пятого и шестого периода. Как указывалось в § 221, это связано с явлением лантаноидного сжатия.
ПОДГРУППА ТИТАНА
В подгруппу титана входят элементы побочной подгруппы IV группы — титан, цирконий, гафний и искусственно полученный (см. стр. 107) курчатовий. Металлические свойства выражены у этих элементов сильнее, чем у металлов главной подгруппы четвертой группы — олова и свинца.
Атомы элементов подгруппы титана имеют в наружном слое по два электрона, а во втором снаружи слое — по 10 электронов, из которых два — на d-подуровне. Поэтому наиболее характерная степень окисленности металлов подгруппы титана равна +4.
В свободном состоянии титан и его аналоги — типичные металлы, по внешнему виду похожие на сталь. Все они тугоплавки, устойчивы по отношению к воздуху и к воде. 224. Титан (Titanium).