Выигрышные стратегии, излагаемые в этой книге, в основном опираются на то обстоятельство, что по мере изменения состава колоды во время игры уровни преимущества казино и игрока в блэкджек изменяются в разные стороны. Преимущество одной или другой стороны часто превышает 10 %, а в некоторых случаях даже достигает 100 %. Мы отслеживаем карты, использованные в первом туре игры. Тот факт, что эти карты теперь отсутствуют в колоде, в общем случае увеличивает или уменьшает преимущество заведения в раздаче второго тура, которая производится из уменьшенной колоды.
В последующих раздачах из все более уменьшающейся колоды, по мере того как преимущество колеблется, увеличиваясь то в пользу игрока, то в пользу заведения, мы делаем более крупные ставки, когда игрок имеет преимущество, и очень маленькие ставки в ситуациях, в которых преимущество находится на стороне казино. В результате игрок обычно выигрывает большинство выгодных крупных ставок и, хотя он может проиграть большинство мелких ставок в невыгодных ситуациях, в итоге он получает значительную прибыль.
Вот один из совершенно конкретных примеров выгодной ситуации, которую можно обнаружить путем тщательного подсчета отыгранных карт. Предположим, что вы играете с дилером «один на один», то есть за столом нет других игроков, кроме вас. Также допустим, что вы тщательно следили за отыгранными картами и точно знаете, что неиспользованные карты, которые могут быть розданы в следующем туре, – это две семерки и четыре восьмерки[29]
. Сколько вам следует поставить? Ответ: делайте максимальную ставку, разрешенную в этом казино. Если необходимо, можно даже взять в долг, потому что вы точно выиграете, если просто остановитесь на тех двух картах, которые вам раздадут.Проанализируем эту ситуацию. Если вы остановитесь на первых двух картах, вы заведомо не переберете – пока что ваше положение безопасно. В руке дилера может быть (7, 7), (7, 8) или (8, 8). Поскольку его сумма меньше 17, дилер обязан прикупать. Если у него (7, 7), значит, в колоде больше нет семерок, и дилер неизбежно прикупит восьмерку и получит перебор. Если у него (7, 8) или (8, 8), он переберет, если прикупит семерку или восьмерку, – а других вариантов и не существует. Таким образом, дилер перебирает, а вы выигрываете.
Это подводит нас к центральной задаче, которую мне нужно было решить в рамках анализа игры в блэкджек: как игрок может в общем случае оценить частично израсходованную колоду, чтобы определить, выгодна ли для него данная ситуация, и если выгодна, то насколько именно? Эта задача была решена[30]
при помощи нескольких вопросов, заданных высокоскоростному компьютеру IBM 704. Первый вопрос был таким: предположим, что в блэкджек играют колодой, из которой удалены только четыре туза. Какова в такой ситуации оптимальная стратегия игрока и каково преимущество заведения (или игрока)? Другими словами, компьютер должен был сделать в точности то же самое, что он делал при разработке базовой стратегии, но с одним отличием. На этот раз задачу нужно было решить для колоды, в которой отсутствуют четыре туза.Результат получился интересным. При игре с колодой, в которой не хватает четырех тузов, казино имеет преимущество 2,42 % перед игроком, играющим по оптимальной стратегии. Могло бы показаться, что изъятие четырех тузов должно повлиять на положение дел значительно сильнее, чем удаление любых других четырех карт, поскольку тузы играют в блэкджеке уникальную роль. Они необходимы для образования блэкджека и мягких рук, а пара тузов наиболее выгодна с точки зрения разделения. Когда бы тузы ни появлялись в игре, кажется, что они помогают игроку. Поэтому некоторые игроки могут предполагать, что колебания содержания тузов в колоде должны иметь значительно больший эффект, чем колебания содержания любых других карт, и что следует попросту отдельно отслеживать, что происходит с тузами. Однако далее мы увидим, что значение тузов не столь подавляюще велико.
Затем компьютеру задали поочередно вычислить преимущество игрока и заведения при оптимальной стратегии игры с колодой, из которой были удалены четыре двойки, четыре тройки и т. д. Результаты для этих и некоторых других особых колод приведены в таблице 4.1. Соответствующие оптимальные стратегии также были рассчитаны, но не приводятся здесь ради экономии места.
Из таблицы 4.1 следует, что недостаток карт со значениями от 2 до 8 может дать игроку преимущество, а относительный избыток таких карт может ему повредить. Напротив, недостаток девяток, десяток и тузов должен быть вреден для игрока, а их избыток должен идти ему на пользу. Можно разработать несколько разных выигрышных стратегий, основанных на подсчете карт одного или нескольких типов. Одна из простых и надежных выигрышных стратегий основана на подсчете пятерок. Она подробно описывается в оставшейся части этой главы. Читателю, которому базовая стратегия, изложенная в главе 3, кажется трудной, следует в будущем использовать в качестве первой выигрышной стратегии игры в блэкджек стратегию подсчета пятерок.