Биография статистика и бизнесмена Виктора Нидерхоффера одновременно печальна и интересна, поскольку демонстрирует, как трудно в одном человеке ужиться крайнему эмпиризму и логике — чистый эмпиризм непременно приводит к одураченносги случайностью. Я привожу его пример потому, что Виктор Нидерхоффер, как и Фрэнсис Бэкон, выступал в университете Чикаго против паутины обучения и религии эффективности рынка. Это было в 1960-х годах, когда указанные взгляды были на пике. По контрасту со схоластикой финансовых теоретиков, он искал аномалии в данных и находил их. Он пришел также к выводу о бесполезности новостей и показал, что чтение газет не дает читателю предсказуемых преимуществ. Он получал свои знания о мире из данных о прошлом, очищенных от предубеждений, комментариев и вымысла. С тех пор расцвела целая отрасль таких игроков, их называют статистическими арбитражерами; некоторые наиболее успешные из них были вначале его учениками. История Нидерхоффера показывает нам, что эмпиризм нужно отделять от методологии.
В центре его
может быть проверено путем измерения расстояния между местом аварии и местом жительства водителя (если, скажем, 20 % аварий происходят в радиусе двенадцати миль). Однако нужно быть осторожными в интерпретации. Наивный читатель, увидев этот результат, скажет, что вероятность попасть в аварию больше, если вы едете по своему району, чем где-то далеко от него. Это типичный пример наивного эмпиризма. Почему? Потому что аварии могут случаться неподалеку от дома просто из-за того, что люди чаще оказываются в автомобиле именно там (20 % времени, проведенного за рулем, они находятся в радиусе двенадцати миль от места, где живут).
Но у наивного эмпиризма есть и более неприятный аспект. Я могу использовать данные, чтобы опровергнуть высказывание, но никогда — чтобы доказать его. Я могу воспользоваться историей, чтобы доказать ложность гипотезы, но никогда — чтобы подтвердить ее. Например, утверждение
может быть проверено, но является абсолютно бессмысленным на поверку. Я могу количественно опровергнуть его, найдя контрпримеры, но я не могу согласиться с ним только потому, что в прошлом рынок никогда не падал на 20 % за три месяца (нельзя просто совершить логический скачок от «никогда не падал» к «никогда не падает»). Выборки могут быть неподходящими; рынки могут меняться; у нас может быть недостаточно исторических данных.
С меньшими опасениями вы можете использовать информацию, чтобы опровергнуть, нежели чтобы подтвердить гипотезы. Почему? Рассмотрим следующие высказывания.
Высказывание А:
Высказывание Б:
Я не могу логически обосновать высказывание А вне зависимости от того, как много белых лебедей я мог последовательно наблюдать в жизни и еще увижу в будущем (если, конечно, я лишен привилегии гарантированно увидеть всех возможных лебедей). Однако можно доказать высказывание Б, найдя один-единственный контрпример. На самом деле высказывание А было опровергнуто после открытия Австралии, где обнаружили
Я сказал, что люди редко проверяют проверяемые высказывания. Впрочем, это даже лучше для тех, кто не может справиться с последствиями такой проверки. Следующее индуктивное высказывание иллюстрирует проблему прошлых данных буквально, без привлечения методологии или логики.