В обозримом будущем охотники за нейтрино смогут внести свой вклад даже в борьбу за мир. При помощи нейтрино можно выслеживать операторов нелегальных ядерных реакторов, ловить контрабандистов, приторговывающих плутонием, и даже остановить тех, кто попытается собрать самодельную атомную бомбу. В настоящее время ученые исследуют перспективы использования нейтринных детекторов для предотвращения распространения ядерного оружия. В таком контексте Георг Раффельт подчеркивает: «Возможно, даже для такой экзотической частицы, как нейтрино, найдется практическое применение». Ядерные реакторы, используемые для производства электроэнергии, – это потенциальный источник оружейного плутония, который со временем накапливается в реакторе – по мере того, как происходит деление ядер урана и уран распадается на более тяжелые элементы. МАГАТЭ стремится помешать распространению ядерного оружия и для этого наблюдает за реакторами, используемыми в энергетике. Периодически инспекторы агентства сравнивают регистрационные записи, сделанные операторами реакторов, с собственными данными, чтобы проверить, не ведется ли на станции какой-нибудь подозрительной деятельности – например, не слишком ли часто останавливают реактор для замены топливных элементов. Современные инструменты для такого мониторинга требуют доступа к коммуникациям реактора – например, для отслеживания того, сколько хладагента было израсходовано. Но такое оборудование неудобно, недешево, а его данные легко подделать.
К счастью, те самые реакции, в ходе которых из урана образуется плутоний, дают и побочный продукт: антинейтрино. Эти антинейтрино – средство для непосредственного измерения параметров ядерных реакций в реальном времени – просто находка для международных наблюдателей. Раффельт говорит: «Антинейтрино не врут». Не существует способа удержать эти частицы в реакторе и скрыть связанную с ним незаконную деятельность, если рядом с реактором установлен детектор нейтрино. На обычных АЭС топливные элементы эксплуатируются непрерывно, до тех пор, пока радиоактивного горючего в них не останется, – как правило, срок службы такого элемента составляет около полутора лет. По прошествии этого периода, когда ядерного топлива на АЭС становится меньше, уровень вырабатываемой энергии (а также поток нейтрино) медленно иссякает по естественным причинам. Но если кто-то очень хочет запастись плутонием, то реактор нужно будет останавливать как минимум на сутки один раз в несколько недель, чтобы поменять элементы. «Топливные стержни должны прожариться в течение строго определенного времени, чтобы в них образовался плутоний, – поясняет Джон Лирнид, – поэтому если найдется реактор, который останавливают раз в месяц, то можно быть уверенным, что там изготовляют начинку для бомб».
Теоретически измерение количества антинейтрино, испускаемых реактором, позволило бы тщательно следить за эксплуатацией этого реактора. Но на практике возникают определенные осложнения. В частности, сложно сконструировать детектор нейтрино, который был бы компактен и при этом достаточно точен. Другая проблема – экранировать такой детектор от блуждающих частиц, например от космических лучей. Кроме того, как объясняет Лирнид, «операторы промышленных атомных электростанций не желают, чтобы яйцеголовые физики шатались по их предприятиям. Кто знает, чего они там натворят!». Тем не менее ученые из Национальной лаборатории им. Лоуренса в Ливерморе и из Сандийских национальных лабораторий протестировали прототип такого устройства на АЭС в Южной Калифорнии. Этот прибор размером примерно с холодильник содержал почти 600 кг нефтяного масла. Детектор, установленный в 10 м под землей, позволил измерить поток нейтрино, идущих от близлежащего реактора, и определить генерируемую мощность этого реактора с точностью до долей процента. Прибор позволил узнать даже те