Читаем Операционная система UNIX полностью

Назначение адреса для клиента также можно выполнить с помощью системного вызова connect(2), устанавливающего связь с сервером и автоматически связывающего сокет клиента с локальным коммуникационным узлом. Вызов connect(2) имеет вид:

#include

#include

int connect(int sockfd, struct sockaddr *servaddr, int addrlen);

Характер этого вызова предполагает создание виртуального канала и, таким образом, используется для предварительного установления связи между коммуникационными узлами. В этом случае клиенту нет необходимости явно связывать сокет с помощью системного вызова bind(2). Локальный узел коммуникационного канала указывается дескриптором сокета sockfd, для которого система автоматически выбирает приемлемые значения локального адреса и процесса. Удаленный узел определяется аргументом servaddr, который указывает на адрес сервера, a addrlen задает его длину.

Вызов connect(2) может также применяться и клиентами, использующими без создания виртуального канала. В этом случае connect(2) не вызывает фактического соединения с сервером, а является удобным способом сохранения параметров адресата (сервера), которому будут направляться датаграммы. При этом клиент будет избавлен от необходимости указывать адрес сервера при каждом отправлении данных.

Следующие два вызова используются сервером только при взаимодействии, основанном на предварительном создании виртуального канала между сервером и клиентом.

Системный вызов listen(2) информирует систему, что сервер готов принимать запросы. Он имеет следующий вид:

#include

#include

int listen(int sockfd, int backlog);

Здесь параметр sockfd определяет сокет, который будет использоваться для получения запросов. Предполагается, что сокет был предварительно связан с известным адресом. Параметр backlog указывает максимальное число запросов на установление связи, которые могут ожидать обработки сервером.[45]

Фактическую обработку запроса клиента на установление связи производит системный вызов

#include

#include

int accept(int sockfd, struct sockaddr *clntaddr,

 int* addrlen);

Вызов accept(2) извлекает первый запрос из очереди и создает новый сокет, характеристики которого не отличаются от сокета sockfd, и таким образом завершает создание виртуального канала со стороны сервера. Одновременно accept(2) возвращает параметры удаленного коммуникационного узла — адрес клиента clntaddr и его размер addrlen. Новый сокет используется для обслуживания созданного виртуального канала, а полученный адрес клиента исключает анонимность последнего. Дальнейший типичный сценарий взаимодействия имеет вид:

sockfd = socket(...);             Создать сокет

bind(sockfd, ...);                Связать его с известным локальным адресом

listen(sockfd, ...);              Организовать очередь запросов

for(;;) {

 newsockfd = accept(sockfd, ...); Получить запрос

 if (fork() == 0) {               Породить дочерний процесс

  close(sockfd);                  Дочерний процесс

  ...

  exit(0);

 } else

  close(newsockfd);               Родительский процесс

}

В этом сценарии, в то время как дочерний процесс обеспечивает фактический обмен данными с клиентом, родительский процесс продолжает "прослушивать" поступающие запросы, порождая для каждого из них отдельный процесс-обработчик. Очередь позволяет буферизовать запросы на время, пока сервер завершает вызов accept(2) и затем создает дочерний процесс. Заметим, что новый сокет newsockfd, полученный в результате вызова accept(2), адресует полностью определенный коммуникационный канал: протокол и полные адреса обоих узлов — клиента и сервера. Напротив, для сокета sockfd определена только локальная часть канала. Это позволяет серверу продолжать использовать sockfd для "прослушивания" последующих запросов.

Наконец, если для сокетов потока при приеме и передаче данных могут быть использованы стандартные вызовы read(2) и write(2), то сокеты дата- грамм должны пользоваться специальными системными вызовами (эти вызовы также доступны для сокетов других типов):

#include

#include

int send(int s, const char *msg, int len, int flags);

int sendto(int s, const char *msg, int len, int flags,

 const struct sockaddr* toaddr, int tolen);

int recv(int s, char *buf, int len, int flags);

int recvfrom(int s, char *buf, int len, int flags,

 struct sockaddr* fromaddr, int* fromlen);

Перейти на страницу:

Похожие книги

Архитектура операционной системы UNIX (ЛП)
Архитектура операционной системы UNIX (ЛП)

Настоящая книга посвящена описанию внутренних алгоритмов и структур, составляющих основу операционной системы (т. н. «ядро»), и объяснению их взаимосвязи с программным интерфейсом. Таким образом, она будет полезна для работающих в различных операционных средах. При работе с книгой было бы гораздо полезнее обращаться непосредственно к исходному тексту системных программ, но книгу можно читать и независимо от него.  Во-вторых, эта книга может служить в качестве справочного руководства для системных программистов, из которого последние могли бы лучше уяснить себе механизм работы ядра операционной системы и сравнить между собой алгоритмы, используемые в UNIX, и алгоритмы, используемые в других операционных системах. Наконец, программисты, работающие в среде UNIX, могут углубить свое понимание механизма взаимодействия программ с операционной системой и посредством этого прийти к написанию более эффективных и совершенных программ.

Морис Дж Бах , Морис Дж. Бах

ОС и Сети, интернет / ОС и Сети / Книги по IT