Читаем Операционная система UNIX полностью

КаналыFIFOСообщенияРазделяемая памятьСокеты (домен UNIX)
Пространство именИмя файлаКлючКлючИмя файла
ОбъектСистемный каналИменованный каналОчередь сообщенийРазделяемая область памятиКоммуникационный узел
Создание объектаpipe()mknod()msgget()shmget()socket()
Связываниеpipe()open()msgget()shmat()bind() connect()
Передача данныхread() write()read() write()msgrcv() msgsnd()Непосредственный доступ memcpy()read() write() recv() send() recvfrom() sendto()
Уничтожениеclose()close() unlink()msgctl()shmdt()close() unlink()

Если говорить о производительности IPC, то наиболее быстрым способом передачи данных между неродственными процессами является разделяемая память. Разделяемая память является частью адресного пространства для каждого из взаимодействующих процессов, поэтому чтение и запись в эту область неотличимы, например, от чтения и записи в область собственных данных процесса. Однако при использовании разделяемой памяти необходимо обеспечить синхронизацию процессов. При использовании семафоров, необходимо иметь в виду следующие обстоятельства:

□ Применение семафоров может увеличить число процессов в очереди на выполнение, поскольку несколько процессов, ожидающих разрешающего сигнала семафора, будут одновременно разбужены и переведены в очередь на выполнение.

□ Применение семафоров увеличивает число переключений контекста, что, в свою очередь, увеличивает нагрузку на систему.

□ В то же время, использование семафоров является наиболее стандартным (POSIX.1b), хотя и неэффективным способом обеспечения синхронизации.

Очереди сообщений предназначены для обмена короткими (обычно менее 1 Кбайт) структурами данных. Если объем данных превышает эту величину, использование сообщений может значительно увеличить число системных вызовов и уменьшить производительность операционной системы.

Интенсивность межпроцессного взаимодействия в системе можно определить с помощью команды sar -m. Вывод команды показывает число использования объектов IPC в секунду:

17:47:53 msg/s sema/s

17:47:58  0.20  20.00

17:48:03  0.60  12.20

17:48:08  2.20  10.40

17:48:13  0.80  25.10

17:48:18  0.00  15.60

Average   0.76  16.66

<p>Заключение</p>

В этой главе начато обсуждение внутренней архитектуры ядра UNIX, которое будет продолжено в следующих главах. Поскольку процессы являются движущей силой операционной системы, мы начали обсуждение именно с этого вопроса. Действительно, не считая нескольких системных процессов, являющихся частью ядра и выполняющих узкосистемные функции, основная работа операционной системы происходит по запросам и в контексте прикладных процессов.

В главе обсуждается, каким образом прикладной процесс взаимодействует с ядром операционной системы, как происходит справедливое распределение системных ресурсов между задачами, и тем самым обеспечивается многозадачность UNIX. Также рассматриваются принципы организации виртуальной памяти, когда каждый процесс имеет независимое адресное пространство, размер которого в ряде случаев значительно превышает объем оперативной памяти компьютера. Наконец, здесь представлены структуры данных ядра, связанные с управлением процессами и памятью.

<p>Глава 4</p><p>Файловая подсистема</p>

Большинство данных в операционной системе UNIX хранится в файлах, организованных в виде дерева и расположенных на некотором носителе данных. Обычно это локальный (т. е. расположенный на том же компьютере, что и сама операционная система) жесткий диск, хотя специальный тип файловой системы — NFS (Network File System) обеспечивает хранение файлов на удаленном компьютере. Файловая система также может располагаться на CD-ROM, дискетах и других типах носителей, однако для простоты изложения сначала мы рассмотрим традиционную файловую систему UNIX, расположенную на обычном жестком диске компьютера.

Перейти на страницу:

Похожие книги

Архитектура операционной системы UNIX (ЛП)
Архитектура операционной системы UNIX (ЛП)

Настоящая книга посвящена описанию внутренних алгоритмов и структур, составляющих основу операционной системы (т. н. «ядро»), и объяснению их взаимосвязи с программным интерфейсом. Таким образом, она будет полезна для работающих в различных операционных средах. При работе с книгой было бы гораздо полезнее обращаться непосредственно к исходному тексту системных программ, но книгу можно читать и независимо от него.  Во-вторых, эта книга может служить в качестве справочного руководства для системных программистов, из которого последние могли бы лучше уяснить себе механизм работы ядра операционной системы и сравнить между собой алгоритмы, используемые в UNIX, и алгоритмы, используемые в других операционных системах. Наконец, программисты, работающие в среде UNIX, могут углубить свое понимание механизма взаимодействия программ с операционной системой и посредством этого прийти к написанию более эффективных и совершенных программ.

Морис Дж Бах , Морис Дж. Бах

ОС и Сети, интернет / ОС и Сети / Книги по IT