Результаты построения множественной регрессии, приведенные в таблице 4.4.1, демонстрируют, что коэффициенты, выражающие влияние исторической волатильности, количества дней до экспирации и количества базовых активов, оказались статистически значимыми на очень высоком уровне достоверности. Вероятность того, что отличие расчетных значений этих коэффициентов от нуля было получено случайно, крайне низка (менее 0,1 %). Традиционные методы интерпретации множественной регрессии позволяют составить следующую формулу для прогноза изменчивости прибыли:
Следует относиться с большой осторожностью к интерпретации и использованию этой формулы. В частности, из таблицы 4.4.1 следует, что параметр intercept (значение, принимаемое зависимой переменной при условии, что значения всех независимых переменных равны нулю) является статистически значимым на высоком уровне достоверности (то есть его отличие от нуля неслучайно). Это означает, что стандартное отклонение прибыли портфелей при условии, что значения всех трех независимых переменных равны нулю, составляет 893,11 (величина intercept). Однако в исследуемом случае такая трактовка абсурдна, поскольку ни одна из трех переменных не может принимать нулевое значение. Следовательно, в данном случае экстраполяция абсолютно недопустима. Поэтому приведенный в таблице 4.4.1 анализ может использоваться не для прогноза степени вариабельности прибыли портфеля в зависимости от выбранного способа распределения капитала, а только для выявления статистической достоверности влияния каждого из анализируемых факторов.
Результаты ANOVA, представленные в таблице 4.4.1, подтверждают, что общая модель множественной регрессии также статистически достоверна на высоком уровне достоверности. Вместе с тем необходимо отметить, что значение коэффициента детерминации достаточно невелико (
4.4.2. Мера концентрации капитала в портфеле
В этом разделе мы сравним между собой различные показатели с точки зрения равномерности распределения капитала внутри портфеля. Предположим, что в соответствии с торговой стратегией имеется сумма
На практике оба эти сценария встречаются крайне редко. Обычно капитал распределяется неким промежуточным образом, когда потенциально более привлекательные комбинации получают больше капитала, чем менее привлекательные. Привлекательность определяется с помощью специальных показателей, семь из которых были подробно рассмотрены в разделах 4.3.1 и 4.3.2. Портфели, в которых большая часть капитала распределена между несколькими комбинациями, мы будем называть «концентрированными». А портфели, в которых доля капитала, инвестированного в разные комбинации приблизительно одинакова, будем называть «равномерными».
Степень концентрированности капитала является важным показателем для сравнения между собой различных способов распределения капитала. Дело в том, что уровень диверсификации портфеля чрезвычайно важен для управления и контроля рисков. Ранее мы оценивали диверсификацию портфеля по количеству базовых активов, включенных в его состав (рис. 4.4.5). Однако, даже если портфель состоит из комбинаций, относящихся к большому количеству базовых активов, он может тем не менее быть слабо диверсифицированным, если большая часть капитала сконцентрирована в комбинациях, относящихся к одному (или нескольким) активам. Если же капитал распределен более-менее равномерно между комбинациями, относящимися к разным базовым активам, то такой портфель является более диверсифицированным и, соответственно, менее рискованным.