В тех случаях, когда капитал внутри портфеля распределялся по дельте (нижний левый график рис. 4.4.7) и по коэффициенту асимметрии (не показан на рисунке) распределение индекса концентрированности напоминает по форме распределение, полученное для показателя «вероятность получения прибыли». Это указывает на относительную равномерность распределения капитала между комбинациями. Зато при формировании портфеля по другому показателю, выражающему оценку риска, по VaR, распределение имеет вид нормального (нижний правый график рис. 4.4.7), что свидетельствует о меньшей степени концентрированности капитала в пределах портфеля.
Подводя итоги, можно разделить семь показателей, использованных для распределения капитала внутри портфеля, на три условные группы (по степени концентрированности портфелей):
1. Показатели, использование которых приводит к созданию высококонцентрированных портфелей. В таких портфелях относительно большая доля капитала инвестируется лишь в несколько комбинаций. В нашем исследовании таким показателем является «математическое ожидание прибыли».
2. Показатели, которые приводят к формированию портфелей со средней степенью концентрации капитала. В этих портфелях большая часть капитала инвестируется в порядка 15 % от общего числа комбинаций, входящих в состав портфеля. К таким показателям можно отнести премию, эквивалент позиции в акциях и VaR.
3. Показатели, использование которых приводит к созданию портфелей с приблизительно равномерным распределением капитала между комбинациями. В нашем исследовании к таким показателям относятся «вероятность получения прибыли», «дельта» и «коэффициент асимметрии».
4.4.3. Трансформации весовой функции
Во всех рассмотренных выше примерах весовая функция φ(
Например, разработчик торговой системы может протестировать вариант, при котором комбинации, имеющие высокие значения показателя, получают значительно большую долю капитала, чем им следовало получить при пропорциональном распределении капитала. Соответственно, комбинации с более низкими значениями показателя получают непропорционально меньшую долю капитала. Этого можно добиться путем трансформации линейной весовой функции в выпуклую функцию.
Противоположный сценарий может состоять в том, что в комбинации, имеющие высокие значения показателя, инвестируется меньшая доля капитала, чем при пропорциональном распределении капитала. В таком случае непропорционально большая доля капитала инвестируется в комбинации с низкими значениями показателя. Для достижения такого результата следует трансформировать линейную весовую функцию в вогнутую функцию.
Можно разработать множество математических вариантов решения данной задачи. Продемонстрируем здесь наиболее простой и технически легко реализуемый вариант трансформации линейных функций в вогнутые и выпуклые. Для этого представим весовую функцию в следующем виде:
где
В дальнейших рассуждениях мы будем полагать
Рассмотрим примеры вычисления значений выпуклой и вогнутой весовых функций (для
Используя степенной показатель