Регрессионный анализ позволяет количественно выразить описанные наблюдения и проверить их статистическую достоверность. Коэффициент наклона линии регрессии равен 1,19, а коэффициент линии безразличия по определению равен 1. В таблице 4.4.2 приведены данные, доказывающие, что полученная разница угловых коэффициентов статистически достоверна на очень высоком уровне. Следовательно, вывод о том, что использование выпуклой функции для распределения капитала приводит к созданию более агрессивного портфеля (с большим потенциалом прибыльности и с большим риском убытков), не случаен. При этом следует оговориться, что такого рода анализ допустим только в тех случаях, когда intercept линии регрессии (значение принимаемое зависимой переменной при условии, что значение независимой переменной равно нулю) близок к нулю. В нашем примере, хотя intercept ниже нуля на приблизительно $50 и его отличие от нуля статистически значимо (таблица 4.4.2), он тем не менее ничтожно мал по сравнению с общим диапазоном значений, принимаемых исследуемыми переменными. Поэтому влиянием intercept можно пренебречь и считать, что прибыль/убыток портфелей, формируемых с помощью выпуклой функции, приблизительно на 20 % больше аналогичных портфелей, построенных на базе исходной весовой функции (поскольку угловой коэффициент равен 1,19).
Хотя значение коэффициента наклона линии регрессии (0,89) близко к 1, оно статистически достоверно отличается от 1 на очень высоком уровне значимости (таблица 4.4.2). Следовательно, использование вогнутой функции для распределения капитала приводит к созданию более консервативного портфеля (с меньшим потенциалом прибыльности и меньшим риском убытков).
Сравнение выпуклой и вогнутой весовой функции по концентрации капитала
В предыдущем разделе мы сравнили прибыльность двух торговых стратегий, отличающихся формой весовой функции, используемой для распределения капитала. Теперь мы сравним те же стратегии по степени концентрированности капитала. Ранее мы описали методику расчета индекса концентрированности портфеля и применили ее для сравнения различных показателей, используемых при распределении капитала (рис. 4.4.7). Эту же методику мы применим для целей настоящего анализа: рассчитаем значения индекса концентрированности для каждого из 6448 портфелей, сформированных на исследуемом историческом периоде для каждой из двух весовых функций.
Для того чтобы сравнить степень концентрированности капитала при формировании портфеля с помощью двух трансформаций весовой функции, мы построили частотное распределение индекса концентрированности. Ранее мы продемонстрировали, что в тех случаях, когда портфели формировались с помощью нетрансформированной весовой функции (основанной на том же показателе – «математическое ожидание прибыли») распределение индекса концентрированности было не нормальным и сильно смещенным в область низких значений индекса (левый средний график рис. 4.4.7). При использовании выпуклого варианта трансформированной весовой функции ненормальность распределения усилилась еще больше (рис. 4.4.10). С наибольшей частотой (>16 % случаев) половина капитала была сконцентрирована всего в 1 % комбинаций. Портфели, в которых половина капитала была распределена в более 15 % комбинаций, оказались еще более редкими (менее 2 % случаев).