Читаем OrCAD PSpice. Анализ электрических цепей полностью

Рис. 1.12. Выходной файл при моделировании схемы на рис. 1.11


Рис. 1.13. Схема со значениями VTh и RTh для эквивалентного генератора Тевенина


Применение теоремы Тевенина позволило нам заменить сложную схему простым неидеальным генератором напряжения. И поскольку в этой схеме нет сопротивления нагрузки RL, не имеет значения, подключим ли мы его к реальной схеме или к эквивалентному генератору. Однако эти две схемы не вполне эквивалентны.

Вернемся, например, к схеме (рис. 1.8), с которой мы начали рассмотрение, при удаленном сопротивлении нагрузки VTh=50 В и RTh=216,7 Ом.

При RL=200 Ом ток составляет 0,12 А. Поскольку этот ток проходит через последовательную цепочку сопротивлений, мощность, потребляемая от источника VTh, составляет 6 Вт. Поскольку мощность нагрузки равна 2,88 Вт, оставшиеся 3,12 Вт выделяются на внутреннем сопротивлении RTh. Но в исходной схеме, напряжение источника равно 75 В и ток его составляет 0,33 А. Следовательно, от него потребляется мощность 24,8 Вт. Поскольку мощность, выделяемая в нагрузочном резисторе сопротивлением 200 Ом равна 2,88 Вт, оставшаяся часть мощности рассеивается на трех резисторах Т-образной схемы.

Этот пример показывает, что с энергетической точки зрения исходная схема и генератор Тевенина не эквивалентны.

Реальные источники тока или реальные источники напряжения

До сих пор мы работали с источниками питания только одного типа, с источниками напряжения. Однако во многих случаях удобно представлять реальные источники электрической энергии как неидеальные источники тока. 

На рис. 1.14 представлен неидеальный источник напряжения. Его напряжение холостого хода, которое часто называют напряжением идеального источника напряжения, составляет 10 В. В реальных источниках напряжения при увеличении тока нагрузки выходное напряжение падает. Чтобы учесть этот эффект, в схеме замещения последовательно с идеальным источником включается внутреннее сопротивление Ri (в данном случае Ri=5 Ом).

Рис. 1.14. Неидеальный источник напряжения


Схема, кроме того, содержит нагрузочный резистор RL=15 Ом. Рассчитав значения напряжения V20=7,5 В и тока IL=0,5 А, попытаемся найти неидеальный источник тока, которым можно было бы заменить неидеальный источник напряжения так, чтобы ток и напряжение на нагрузке не изменились.

Нетрудно проверить, что, заменив неидеальный источник напряжения идеальным источником тока в 2 А и включенным параллельно ему резистором Ri=5 Ом, мы реализуем такой источник. При этом значения двух эквивалентных генераторов связаны соотношением IS= VS/Ri

На рис. 1.15 приведена схема неидеального источника тока. В ней напряжение и ток нагрузочного резистора такие же, как в схеме на рис. 1.14: V20=7,5 В и IL=0,5 А. Мощность, выделяемая в нагрузке, равна V20IL=3,75 Вт. Но эквивалентны ли обе схемы по энергетическим соотношениям? В схеме на рис. 1.14 мощность, потребляемая от VS, составляла 5 Вт, а в схеме на рис. 1.15, мощность, потребляемая от источника тока, равна 15 Вт. Чтобы объяснить это различие подсчитайте мощность, выделяемую в Ri для обоих случаев.

Рис. 1.15. Неидеальный источник тока, обеспечивающий те же условия в нагрузке, что схема на рис. 1.14 

Анализ для цепей с источниками тока с помощью Spice

Решения для цепей, содержащих источники тока, могут быть получены методом узловых потенциалов проще, чем методом контурных токов. Моделирование с помощью Spice основано на методе узловых потенциалов. Вспомните, что каждый узел в Spice должен быть обозначен, а каждый элемент цепи должен быть включен между определенными узлами. Для источников напряжения положительный узел должен быть указан в строке описания первым. Для источников тока первым должен быть указан узел, от которого направлена стрелка внутри обозначения источника. Простейший пример приведен на рис. 1.16. Рассчитаем токи и напряжения в схеме.

Рис. 1.16. Простая цепь с источником тока


Поскольку сопротивление каждой из двух параллельных резистивных ветвей составляет 200 Ом, ток источника в 500 мА делится поровну между ветвями: I1=I2=250 мА. Напряжение на Ri равно V10=RiI1=200·0,250=50 В. Напряжение на выходе V20=RLI2=100·0,250=25 В.

Создадим входной файл и получим решение на PSpice:

Simple Circuit with Current Source

I 0 1 500mA

RI 1 0 200

R1 1 2 100

RL 2 0 100

.OP

.OPT nopage

.TF V(2) I

.END

Перейти на страницу:

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
C# 4.0: полное руководство
C# 4.0: полное руководство

В этом полном руководстве по C# 4.0 - языку программирования, разработанному специально для среды .NET, - детально рассмотрены все основные средства языка: типы данных, операторы, управляющие операторы, классы, интерфейсы, методы, делегаты, индексаторы, события, указатели, обобщения, коллекции, основные библиотеки классов, средства многопоточного программирования и директивы препроцессора. Подробно описаны новые возможности C#, в том числе PLINQ, библиотека TPL, динамический тип данных, а также именованные и необязательные аргументы. Это справочное пособие снабжено массой полезных советов авторитетного автора и сотнями примеров программ с комментариями, благодаря которым они становятся понятными любому читателю независимо от уровня его подготовки. Книга рассчитана на широкий круг читателей, интересующихся программированием на C#.Введите сюда краткую аннотацию

Герберт Шилдт

Программирование, программы, базы данных