.DC V1 0 50 10
.PROBE
.END
После окончания моделирования вы можете просмотреть выходной файл и выбрать графики, которые вам хотелось бы получить. Для подготовки к построению графиков выберите View, проигнорировав View Output Window и Simulating Status Window.
Из основного меню выберите Trace, Add Trace и вы увидите новый экран с выходными параметрами, такими как напряжения V, V(1), V(2) и V(3), токи I(
Желательно получить распечатку результатов, но если вы захотите также нанести на графики поясняющие надписи, используйте команды Plot, Label, Text и наберите необходимый текст в соответствующем поле. Затем нажмите OK. С помощью мыши перетащите появившийся текст в необходимую точку экрана. Вы должны получить вид экрана в соответствии с рис. 1.34.
Рис. 1.34. Зависимости токов IR3
и IR1 от напряжения питания, полученные с помощью функции .ProbeЧтобы ознакомиться с еще одной интересной возможностью, выберите Trace, Cursor, Display, чтобы вызвать окно Probe Cursor. Вы увидите табло:
А1 = 0.000, 0.000
А2 = 0.000, 0.000
dif = 0.000, 0.000
показывающее значения, соответствующие положению курсора в начале координат. Подведите с помощью мыши курсор к точке, соответствующей примерно 15 В на оси X, затем с помощью стрелок ← и → на клавиатуре переместите точку точно в 15 В. На табло должны появиться цифры:
А1 = 15.000, 37.500m
А2 = 0.000, 0.000
dif = 15.000, 37.500m
Координаты А1 представляют собой напряжение
Чтобы рассмотреть другой интересный пример использования программы Probe, вернемся к примеру рис. 1.30, где была показана схема с полиномиальным зависимым источником напряжения. Добавьте команду .PROBE во входной файл и снова запустите моделирование. Теперь вместо таблиц результатов в выходном файле используйте Probe, чтобы построить график зависимости V(2), V(3), V(4). Поработайте с кривыми, пока не почувствуете, что свободно пользуетесь функциями Probe. Используйте Trace, Cursor, Display, чтобы проверить численные результаты, сравнив их с полученными при помощи команды .PRINT.
В программе Probe имеется много других возможностей, которые будут продемонстрированы в процессе рассмотрения примеров в тексте.
Метод узловых потенциалов и PSpice
Традиционные курсы электротехники обычно излагают метод узловых потенциалов, используя стандартные уравнения. Эти уравнения гораздо легче записать, если все неидеальные источники напряжения заменить неидеальными источниками тока. Это имеет тот недостаток, что цепь физически изменяется, но за счет этого уменьшается количество узлов и, соответственно, количество уравнений. После нахождения узловых потенциалов вы можете провести обратное преобразование источников, приведя схему снова к исходной. Стандартная форма уравнений для узловых потенциалов:
где
Схема на рис. 1.35 будет использована для анализа по методу узловых потенциалов. В качестве упражнения запишите уравнения по этому методу и решите их с помощью какой-либо компьютерной программы или калькулятора. Записать стандартные уравнения и решить их полезно, но решать их каждый раз неэффективно.
Рис. 1.35. Схема с несколькими источниками тока для анализа методом узловых потенциалов
Решение с помощью PSpice достаточно просто и не содержит ничего нового. Входной файл имеет вид:
Nodal Analysis of Circuit with Several Current Sources
I1 1 0 20mA
I2 0 2 10mA
I3 0 3 15mA
R1 1 0 500
R2 1 2 500
R3 2 0 400
R4 2 3 500
R5 3 0 300
.OP
.ОРТ nopage
.END